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We consider the implications of the most general two-body quark-quark interaction Hamiltonian for the

spin-flavor structure of the negative parity L ¼ 1 excited baryons. Assuming the most general two-body

quark interaction Hamiltonian, we derive two correlations among the masses and mixing angles of these

states, which constrain the mixing angles, and can be used to test for the presence of three-body quark

interactions. We find that the pure gluon-exchange model is disfavored by data, independently of any

assumptions about hadronic wave functions.
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The constituent quark model (CQM) [1–4] is a popular
and time-tested approach used for modeling hadron prop-
erties. The basic assumption is that the quarks inside the
hadron can be approximated as nonrelativistic point parti-
cles with constituent masses, interacting through two-body
potentials.

In a recent paper [5], we presented a general method for
relating the quark interaction Hamiltonian to the spin-
flavor structure of the hadronic mass operator. Consider
a given two-body interaction Hamiltonian Vqq ¼P

i>jOijRij, where Oij acts only on the spin-flavor indices

of the quarks i, j, and Rij acts only on their orbital degrees

of freedom. Then the hadronic matrix elements of the
Hamiltonian Vqq on a baryon state jBi contain only the

projections O� of Oij onto irreducible representations of

S3, the permutation group of 3 objects acting on the spin-
flavor degrees of freedom

hBjVqqjBi ¼
X
�

C�hBjO�jBi: (1)

The coefficients C� are related to the reduced matrix
elements of the orbital operators Rij, and are given by

overlap integrals of the quark model wave functions. The
relation Eq. (1) allows a general study of the hadronic spin-
flavor structure independently of the orbital structure of the
interaction and wave functions. An application of the S3
group in a similar context was discussed in Ref. [6], where
S3 refers to permutations of the quarks’ orbital degrees of
freedom. The present analysis makes crucial use of the
transformation properties of operators and states under S3
acting on the spin-flavor degrees of freedom.

One of the basic assumptions of the constituent quark
model is the dominance of two-body quark interactions.
However, three-body quark interactions may be present as
well. For example, it is known that in QCD with Nf ¼ 3

light quark flavors, three-body interactions are induced by

instanton effects (0t Hooft interaction) [7]. We point out
that the system of the negative parity excited nucleons is a
possible testing ground for the presence of three-body
quark forces.
In this Letter, we use the representation Eq. (1) to obtain

information about the spin-flavor structure of the quark
forces from the system of the negative parity excited
baryons. We derive universal correlations among masses
and mixing angles which are valid in any model for quark
interactions containing only two-body interactions.
Deviations from these predictions can be used to test for
the presence of three-body quark interactions. We obtain
constraints on the strength of spin-orbit interactions, which
can be used to distinguish between two popular models for
quark interactions: the one-gluon exchange model [1], and
the Goldstone boson exchange model [8]. This gives in-
formation about the relative importance of these two inter-
actions in generating the effective quark forces in the low
energy regime.
The most general two-body quark interaction Hamil-

tonian in the constituent quark model can be written in
generic form as Vqq ¼ P

i<jVqqðijÞ with

VqqðijÞ ¼
X
k

f0;kðrijÞOS;kðijÞ þ fa1;kðrijÞOa
V;kðijÞ

þ fab2;kðrijÞOab
T;kðijÞ; (2)

where OS, O
a
V , O

ab
T act on spin-flavor, and fkðrijÞ are

functions of rij ¼ jri � rjj. Their detailed form is unim-

portant for our considerations. a, b ¼ 1, 2, 3 denote spatial
indices.
We list in Table I a complete set of spin-flavor two-body

operators with all possible Lorentz structures allowed by
the orbital angular momentum L ¼ 1. Columns 3 and 4 of
Table I list the projections of the spin-flavor operators OS,
Oa

V , O
ab
T onto the irreducible representations of the S3
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permutation group, computed as explained in Ref. [5]. The
representation content depends on the symmetry of Oij

under the permutation ½ij�: the symmetric operators Oij

are decomposed as SþMS, and antisymmetric Oij as

MSþ A.
The symmetric S projection depends only on quantities

acting on the entire hadron Si, Ta, Gia, while the mixed-
symmetric MS operators depend on operators acting on the
core and excited quarks. We express them in a form
commonly used in the application of the 1=Nc expansion
[9], according to which their matrix elements are under-
stood to be evaluated on the spin-flavor state j�ðSIÞi
constructed as a tensor product of an excited quark with
a symmetric core with spin-flavor Sc ¼ Ic. The antisym-
metric operators contain also an A projection; its orbital
matrix element vanishes for Nc ¼ 3 because of
T-invariance [5,6], such that these operators do not con-
tribute, and are not shown in Table I.

The orbital matrix elements yield factors of Li, Lij
2 ¼

1
2 fLi; Ljg � 1

3�
ijLðLþ 1Þ, which are the only possible

structures which can carry the spatial index.
From Table I, one finds that the most general form of the

mass operator in the presence of two-body quark interac-
tions is a linear combination of 10 operators

O1¼T2; O2¼ ~S2c; O3¼ ~s1 � ~Sc; O4¼ ~L � ~Sc;
O5¼ ~L � ~s1; O6¼Lita1G

ia
c ; O7¼Ligia1 T

a
c ;

O8¼Lij
2 fSic;Sjcg; O9¼Lij

2 s
i
1S

j
c; O10¼Lij

2 g
ia
1 G

ja
c :

(3)

This gives the most general form of the hadronic mass
operator Eq. (1) of the negative parity L ¼ 1 states allow-
ing only two-body quark operators.

The L ¼ 1 quark model states include the following
SU(3) multiplets: two spin-1=2 octets 81=2, 801=2, two

spin-3=2 octets 83=2, 8
0
3=2, one spin-5=2 octet 805=2, two

decuplets 101=2, 103=2 and two singlets 11=2, 13=2. States
with the same quantum numbers mix, and we define the
relevant mixing angles in the nonstrange sector as

Nð1535Þ ¼ cos�N1N1=2 þ sin�N1N
0
1=2

Nð1650Þ ¼ � sin�N1N1=2 þ cos�N1N
0
1=2

(4)

and analogous for the J ¼ 3=2 states with the replace-
ments ½Nð1535Þ; Nð1650Þ; N1=2; N

0
1=2; �N1� ! ½Nð1520Þ;

Nð1700Þ; N3=2; N
0
3=2; �N3�.

The quark model basis states (N1=2, N
0
1=2) and (N3=2,

N0
3=2) have quark spin S ¼ ð1=2; 3=2Þ which adds up to-

gether with the orbital angular momentum L ¼ 1 to give
J ¼ 1=2 and J ¼ 3=2, respectively. The mixing angles can
be chosen to lie in the range (0�, 180�) by appropriate
phase redefinitions of the hadron states.
The hadronic mass operator in the quark model basis

can be written as a linear combination of the 11 coefficients

M̂ijCj ¼ N�
i , where we represent the octets and decuplets

by their nonstrange members N� ¼ ðN1=2; N
0
1=2; N1=2 �

N0
1=2; N3=2; N

0
3=2; N3=2 � N0

3=2; N
0
5=2; �1=2;3=2; �1=2;3=2ÞT .

The coefficients M̂ij can be extracted from the tables in

Ref. [9].

The rank of the matrix M̂ij is 9, which implies the

existence of two universal relations among the 11 hadronic
parameters (the masses of the 9 multiplets plus the two
mixing angles) which must hold in any quark model con-
taining only two-body quark interactions.
The first universal relation involves only the nonstrange

hadrons, and requires only isospin symmetry. It can be
expressed as a correlation among the two mixing angles
�N1 and �N3 (see Fig. 1 left)

TABLE I. The most general two-body spin-flavor quark interactions and their projections onto irreducible representations of S3, the
permutation group of three objects acting on the spin-flavor degrees of freedom. C2ðFÞ ¼ F2�1

2F is the quadratic Casimir of the

fundamental representation of SUðFÞ. The last column shows the projection of each two-body operator onto the basis of 10 operators in
Eq. (3).

Operator Oij OS OMS

Scalar 1 1 � � � 1

tai t
a
j T2 � 3C2ðFÞ T2 � 3t1Tc � 3C2ðFÞ O1, O1 � 3O2

~si � ~sj ~S2 � 9
4

~S2 � 3 ~s1 � ~Sc � 9
4 O2 þ 2O3, O2 �O3

~si � ~sjtai taj G2 � 9
4C2ðFÞ 3g1Gc �G2 þ 9

4C2ðFÞ F
4 O1 þ 1

2O2 þO3, O1 � ð3þ 4
FÞO2 þ 4

FO3

Vector (symm) ~si þ ~sj ~L � ~S 3 ~L � ~s1 � ~L � ~S O4 þO5, 2O5 �O4

ð~si þ ~sjÞtai taj 1
2L

ifGia; Tag � C2ðFÞLiSi 2 1�F
F LiSic þ Ligia1 T

a
c þ Lita1G

ia
c O6 þO7 þ F�1

2F O4, O6 þO7 � 2 F�1
F O4

Vector (anti) ~si � ~sj � � � 3 ~L � ~s1 � ~L � ~S 2O5 �O4

ð~si � ~sjÞtai taj � � � Ligia1 T
a
c � Lita1G

ia
c O6 �O7

Tensor (symm) fsai ; sbj g Lij
2 fSi; Sjg 3Lij

2 fsi1; Sjcg � Lij
2 fSi; Sjg O8 þ 4O9, O8 � 2O9

fsai ; sbj gtci tcj Lij
2 fGia; Gjag Lij

2 g
ia
1 G

ja
c � F�1

4F Lij
2 fSic; Sjcg F�1

2F O8 þ 4O10,
F�1
F O8 � 4O10

Tensor (anti) ½sai ; sbj � � � � 0 � � �
½sai ; sbj �tci tcj � � � 0 � � �
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1

2
½Nð1535Þ þ Nð1650Þ� þ 1

2
½Nð1535Þ � Nð1650Þ�ð3 cos2�N1 þ sin2�N1Þ � 7

5
½Nð1520Þ þ Nð1700Þ�

þ ½Nð1520Þ � Nð1700Þ�
�
� 3

5
cos2�N3 þ

ffiffiffi
5

2

s
sin2�N3

�
¼ �2�1=2 þ 2�3=2 � 9

5
N5=2: (5)

This expresses a correlation among the mixing angles (�N1,
�N3) which is universal for any quark model containing
only two-body interactions. This correlation holds also
model independently in the 1=Nc expansion, up to correc-
tions of order 1=N2

c , since for nonstrange states, the mass
operator to order Oð1=NcÞ [9,10] is generated by the op-
erators in Eq. (3). An example of an operator which vio-
lates this correlation is LigjafSjc; Gia

c g, which can be
introduced by three-body quark forces.

On the same plot, we show also the values of the mixing
angles obtained in several analyses of theN� ! N� strong
decays and N� hadron masses. The two black dots corre-
spond to the mixing angles ð�N1; �N3Þ ¼ ð22:3�; 136:4�Þ
and (22.3�, 161.6�) obtained from a study of the strong

decays in Ref. [11]. The second point is favored by a 1=Nc

analysis of photoproduction amplitudes Ref. [12]. The
yellow square corresponds to the values used in
Ref. [9,10] ð�N1; �N3Þ ¼ ð35:0�; 174:2�Þ, and the tri-
angle gives the angles corresponding to the solution 10
in the large Nc analysis of Ref. [13] ð�N1; �N3Þ ¼
ð114:6�; 80:2�Þ. All these determinations (except the tri-
angle) are compatible with the ranges �N1 ¼ 0�–35�,
�N3 ¼ 135�–180�. They are also in good agreement with
the correlation Eq. (5) and provide no evidence for the
presence of three-body quark interactions.
The second universal relation expresses the spin-

weighted SU(3) singlet mass �� ¼ 1
6 ð2�1=2 þ 4�3=2Þ in

terms of the nonstrange hadronic parameters

�� ¼ 1

6
½Nð1535Þ þ Nð1650Þ� þ 17

15
½Nð1520Þ þ Nð1700Þ� � 3

5
N5=2ð1675Þ ��1=2ð1620Þ

� 1

6
½Nð1535Þ � Nð1650Þ�ðcos2�N1 þ sin2�N1Þ þ ½Nð1520Þ � Nð1700Þ�

�
13

15
cos2�N3 � 1

3

ffiffiffi
5

2

s
sin2�N3

�
: (6)

The right-hand side of Eq. (6) is plotted as a function of
�N1 in the right panel of Fig. 1, where it can be compared
against the experimental value �� ¼ 1481:7� 1:5 MeV.
Allowing for SU(3) breaking effects�100 MeV, this con-
straint is also compatible with the range for �N1 obtained
above from direct determinations of the mixing angles.

Combining the Eqs. (5) and (6) gives a determination of
the mixing angles from hadron masses alone, in contrast to
their usual determination from N� ! N� decays [14]. The
dark shaded (green) area in Fig. 1 shows the allowed region
for (�N1, �N3) compatible with a positive SU(3) breaking

correction in �� of 100� 30 MeV. One notes a good
agreement between this determination of the mixing angles
and that from N� ! N� strong decays.
We derive next constraints on the spin-flavor structure of

the quark interaction, which can discriminate between
models of effective quark interactions. There are two
popular models used in the literature, see Ref. [3] for a
discussion in the context of the states considered here. The
first model is the one-gluon-exchange model (OGE) [1]
which includes operators in Table I without isospin depen-
dence. Expressed in terms of the operator basis O1�10 this
gives the constraints

C1 ¼ C6 ¼ C7 ¼ C10 ¼ 0: (7)

An alternative to the OGE model is the Goldstone boson
exchange model (GBE) [8]. In this model, quark forces are
mediated by Goldstone boson exchange, and the quark
Hamiltonian contains all the operators in Table I which
contain the flavor-dependent factor tai t

a
j . The coefficients of

the hadronic Hamiltonian Eq. (1) satisfy the constraints
(F ¼ 3 is the number of light quark flavors)

C1 ¼ F

4
C3; C5 ¼ C9 ¼ 0: (8)

We would like to determine the coefficients Ci in the
most general case and compare their values with the pre-
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FIG. 1 (color online). Left: correlation in the (�N1, �N3) plane
in the quark model with the most general two-body quark
interactions. Right: prediction for the spin-weighted �� mass in
the SU(3) limit as a function of the �N1 mixing angle, corre-
sponding to the two solutions for �N3. The dark shaded (green)
points correspond to ��¼ ��exp�ð100�30ÞMeV, with ��exp ¼
1481:7� 1:5 MeV.
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dictions of the two models Eqs. (7) and (8). However, since

the rank of M̂ij is 9, only the following combinations of

coefficients can be determined from the available data: C0,
C1 � C3=2, C2 þ C3, C4, C5, C6, C7, C8 þ C10=4, C9 �
2C10=3. In particular, as the coefficients of the spin-orbit
interaction terms C4�7 can be determined, we propose to
use their values to discriminate between different models
of quark interaction.

They can be compared with the hierarchy expected in
each model. In the OGE model, the flavor-dependent op-
erators have zero coefficients C6;7 � 0 � jC4;5j, while in

the GBE model, the spin-orbit interaction of the excited
quark vanishes C5 � 0 � jC4;6j.

The coefficient C5 ¼ 75:7� 2:7 MeV is fixed by the
�3=2 ��1=2 splitting [10]. This indicates the presence of

the operators si � sj in the quark Hamiltonian, which is

compatible with the OGE model.
A suppression of the coefficients C6;7 would be further

evidence for the OGE model. We show in Fig. 2 the
coefficients of the spin-orbit operators C6;7 as functions

of �N1. Within errors, small values for C7 are still allowed;
however, no suppression is observed for C6. This indi-
cates the presence of the operators ðsi � sjÞtai taj in the

quark Hamiltonian. These results show that the quark
Hamiltonian is a mix of the OGE and GBE interactions.

In the pure OGE model Eq. (7), the 7 nonvanishing
coefficients Ci can be determined from the 7 nonstrange
N�, �� masses (assuming only isospin symmetry but no
specific form of the wave functions). This fixes the mixing
angles, and the �3=2 ��1=2 splitting, up to a 2-fold ambi-

guity. The allowed region for mixing angles is shown as the
encircled (violet) region in Fig. 1 left, and the central
values as diamonds ð�N1; �N3Þ ¼ ð64:2�; 98:2�Þ, (114.5�,
88.2�). Note that they are different from the angles ob-
tained in the Isgur-Karl model (31.7�, 173.6�) in
Refs. [2,15].

The encircled (violet) region near �N1 � 0 is consistent
with the determinations from strong decays and from the
SU(3) universal relation Eq. (6), but is ruled out by the
prediction for the � splitting, in agreement with the non-
zero value of C6 that can be read off from Fig. 2. This
implies that the pure OGE model is disfavored. Note that
this argument neglects possible long-distance contribu-
tions to the � splitting, due to the proximity of the
�ð1405Þ to the KN threshold. Such threshold effects are
not described by the quark Hamiltonian Eq. (2), and their
presence could invalidate the prediction of the � splitting
in the OGE model.

We discussed in this Letter the predictions of the con-
stituent quark model with the most general spin-flavor two-
body quark interactions, using a new relation between the
spin-flavor structure of the quark interactions and the
hadronic mass operator [5]. We find two universal relations
among the hadronic parameters of the negative parity

excited baryons, valid in any model with two-body quark
interactions. They fix the mixing angles, and deviations
from them can probe the presence of three-body quark
interactions. We propose new constraints on the relative
importance of the different spin-flavor structures in the
quark interaction, without imposing any theoretical preju-
dice on the form of the quark interaction Hamiltonian and
the hadronic wave functions. The precision of these con-
straints is limited by the uncertainty in the hadronic masses
and mixing angles. In principle, such information can also
be gained from lattice QCD, where the mixing angles can
be related to the relative overlaps of the interpolating fields
for the excited states.
We acknowledge useful discussions with W.

Melnitchouk and D. Richards.
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FIG. 2 (color online). The coefficients of the spin-orbit opera-
tors C6;7 as functions of the mixing angle �N1, in the quark model

with the most general two-body interactions. The dark shaded
(green) area is obtained by imposing the �� constraint Eq. (6).
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