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Refined astrometry measurements allow us to detect large-scale deviations from isotropy through real-

time observations of changes in the angular separation between sources at cosmic distances. This ‘‘cosmic

parallax’’ effect is a powerful consistency test of the Friedmann-Robertson-Walker metric and may set

independent constraints on cosmic anisotropy. We apply this novel general test to Lemaitre-Tolman-Bondi

cosmologies with off-center observers and show that future satellite missions such as Gaia might achieve

accuracies that would put limits on the off-center distance which are competitive with cosmic microwave

background dipole constraints.
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Introduction.—The standard model of cosmology rests
on two main assumptions: general relativity and a homo-
geneous and isotropic metric, the Friedmann-Robertson-
Walker (FRW) metric. While general relativity has been
tested with great precision at least in the laboratory and in
the solar system, the issue of large-scale deviations from
homogeneity and isotropy is much less settled. There is by
now an abundance of literature on tests of the FRWmetric,
and on alternative models invoked to explain the acceler-
ated expansion by the effect of strong, large-scale devia-
tions from homogeneity (see [1] for a review). Several such
models adopt as an alternative the Lemaitre-Tolman-Bondi
(LTB) metric, that is a model with a spherically symmetric
distribution of matter (see, for instance, [2–8]). The main
motivation for this is the fact that the distance-dependent
expansion rate can explain the supernovae Ia excess dim-
ming without a dark energy field.

The LTB universes appear anisotropic to any observer
except the central one. In every anisotropic expansion the
angular separation between any two sources varies in time,
thereby inducing a cosmic parallax (CP) effect. This is
totally analogous to the classical stellar parallax, except
here the parallax is induced by a differential cosmic ex-
pansion rather than by the observer’s own movement.
Together with the Sandage effect of velocity shift _z
[9,10], CP belongs to the new realm of real-time cosmol-
ogy, a direct way of testing our Universe based on cosmo-
logical observations spaced by several years [11–15].

One can expect on dimensional grounds that this differ-
ential cosmic expansion generates after an observation
time lag of �t ¼ 10 yr an effect of order H0�t ¼ 10�9h;
therefore two sources separated by 1 rad today will show a
parallax of 10�9h rad � 200h �as in ten years, which is
well above the accuracy goal of 10 �as set by Gaia (for
V � 15) [16] and other planned missions like SIM [17],
JASMINE [18], and VSOP-2 [19]. Adopting Gaia specifi-

cations, we show that 106 quasars might be enough to
constrain the off-center distance r0 to the 10 Mpc scale,
similar to or better than any other proposed test of the
Copernican principle but without the degeneracy with our
peculiar velocity that afflicts the constraints from the cos-
mic microwave background [5,8,20]. In this Letter we first
derive an estimate of CP by intuitive arguments based on a
FRW description and then test it with a full numerical
integration of light-ray geodesics in LTB models.
Estimating the cosmic parallax.—Figure 1 depicts the

overall scheme describing a possible time variation of the
angular position of a pair of sources that expand aniso-
tropically with respect to the observer. We label the two
sources a and b, and the two observation times 1 and 2. In
what follows, we will refer to (t, r, �, �) as the comoving
coordinates with origin on the center of a spherically
symmetric model. Peculiar velocities apart, the symmetry
of such a model forces objects to expand radially outwards,
keeping r, �, and � constant.

FIG. 1 (color online). Overview, notation, and conventions.
For clarity, we assumed here that the points C, O, a1, b1, a2,
b2 all lie on the same plane. Comoving coordinates r and r0
correspond to physical coordinates X and X0.
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Let us assume now an expansion in a flat FRW space
from a ‘‘center’’ C observed by an off-center observer O at
a distance X0 from C. Since we are assuming FRW it is
clear that any point in space could be considered a ‘‘cen-
ter’’ of expansion: it is only when we will consider a LTB
universe that the center acquires an absolute meaning. The
relation between the observer line-of-sight angle � and the
coordinates of a source located at a radial distance X and
angle � in the C frame is

cos� ¼ X cos�� X0

ðX2 þ X2
0 � 2X0X cos�Þ1=2 ; (1)

where all angles are measured with respect to the CO axis
and all distances in this section are to be understood as
physical distances.

We consider first two sources at location a1, b1 on the
same plane that includes the CO axis with an angular
separation �1 as seen from O, both at distance X from C
(throughout this Letter we shall always assume for sim-
plicity that both sources share the same � coordinate).
After some time �t, the sources move to positions a2, b2
and the distances X and X0 will have increased by �tX and
�tX0, respectively. If for a moment we allow ourselves the
liberty of assigning to the scale factor aðtÞ and the H
function a spatial dependence, a time variation of � is
induced. The variation �t� is the anticipated cosmic par-
allax effect and can be easily estimated if we suppose
that the Hubble law is just generalized to �tX ¼
XHðt0; XÞ�t � XHX�t. Generalizing to sources on differ-
ent shells separated by a small �X � Xb � Xa (not to be
mistaken with the time interval �tX) and �� � �b1 � �a1,
after straightforward geometry we arrive at

�t� ¼ s�tðHobs �HXÞðcos���þ sin��X=XÞ
þHXdHX=dX sin��X þOðs2Þ; (2)

where Hobs � Hðt0; r0Þ, s � X0=X � 1 (at this order we
can neglect the difference between the observed angle �
and �). We can also convert the above intervals�X into the
redshift interval �z by using the relations r ¼ R

dz=HðzÞ
and X ¼ R

aðt0; rÞdr, which combine to �X ¼
aðt0; XÞ�z=HðzÞ � �z=HðzÞ [we impose aðt0; X0Þ ¼ 1],
where HðzÞ � HðtðzÞ; XÞ.

In a FRW metric, H does not depend on r and the
parallax vanishes. On the other hand, any deviation from
FRWentails such spatial dependence and the emergence of
cosmic parallax, except possibly for special observers
(such as the center of LTB). A constraint on �t� is there-
fore a constraint on cosmic anisotropy.

Rigorously, one actually needs to perform a full integra-
tion of light-ray geodesics in the new metric. Nevertheless,
we shall assume for a moment that for an order of magni-
tude estimate we can simply replace H with its space-
dependent counterpart given by LTB models. In order for
a LTB cosmology to have any substantial effect (e.g.,

explaining the SNIa Hubble diagram) it is reasonable to
assume a difference between the local Hobs and the distant
HX of orderHobs [5]. More precisely, puttingHobs �HX ¼
Hobs�h then one has that the overall effect �t� for on-
shell sources is of order s cos�Hobs�h�t��. That is,
as anticipated, for �t ¼ 10 yr we expect a parallax of
200s cos��h�� �as for sources separated by ��. Simi-
larly, for radial source pairs, neglecting the dHX=dX term
(which is valid except close to the edge of the LTB void),
one has s sin�Hobs�h�t�z=z � 200s sin��h�z=z �as
[assuming X � zHðzÞ�1].
Let us finally consider the main expected source of

noise, the intrinsic peculiar velocities of the sources. The
variation in angular separation for sources at angular di-
ameter distance DA (measured by the observer) and pecu-
liar velocity vpec can be estimated as

�t�pec ¼
�

vpec

500 km=s

��
DA

1 Gpc

��1
�

�t

10 yr

�
�as: (3)

This velocity field noise is therefore typically smaller than
the experimental uncertainty (especially for large dis-
tances) and again will be averaged out for many sources.
Notice that the observer’s own peculiar velocity produces a
systematic offset sinusoidal signal �t�pec;O of the same

amplitude as �t�pec that has to be subtracted from the

observations. We discuss this further below.
Geodesic equations.—These very suggestive but sim-

plistic calculations need confirmation from an exact treat-
ment where the full relativistic propagation of light rays is
taken into account. We will thus consider in the following
two particular LTB models capable of fitting the observed
SNIa Hubble diagram and the cosmic microwave back-
ground (CMB) first peak position and compatible with the
cosmic background explorer (COBE) results of the CMB
dipole anisotropy, as long as the observer is within around
15 Mpc from the center [5]. Moreover, both models have
void sizes which are small enough (z� 0:3) not to be ruled
out due to distortions of the CMB blackbody radiation
spectrum [20].
The LTB metric can be written as (primes and dots refer

to partial space and time derivatives, respectively)

ds2 ¼ �dt2 þ ½R0ðt; rÞ�2
1þ �ðrÞ dr

2 þ R2ðt; rÞd�2; (4)

where �ðrÞ can be loosely thought as position dependent
spatial curvature term. Two distinct Hubble parameters
corresponding to the radial and perpendicular directions

of expansion are defined as Hk ¼ _R0=R0 and H? ¼ _R=R
[in a FRW metric R ¼ raðtÞ and Hk ¼ H?]. This class of
models exhibits implicit analytic solutions of the Einstein
equations in the case of a matter-dominated universe, to wit
(in terms of a parameter �)

R ¼ ðcosh�� 1Þ �

2�
þ Rlss½cosh�þ ffiffiffiffi

D
p

sinh��; (5)
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ffiffiffiffi
�

p
t ¼ ðsinh�� �Þ�=ð2�Þ

þ Rlss½sinh�þ ffiffiffiffi
D

p ðcosh�� 1Þ�; (6)

where D ¼ ð�þ �RlssÞ=ð�RlssÞ, and �, �, and Rlss are all
functions of r. In fact, RlssðrÞ stands for Rð0; rÞ and we will
choose t ¼ 0 to correspond to the time of last scattering,
while �ðrÞ is an arbitrary function and �ðrÞ is assumed to
be positive. Because of the axial symmetry and the fact that
photons follow a path which preserves the 4-velocity iden-
tity u�u� ¼ 0, the four second-order geodesic equations
for (t, r, �, �) can be written as five first-order ones. We
will choose as variables the center-based coordinates
t; r; �; p � dr=d	 and the redshift z, where 	 is the affine
parameter of the geodesics. We shall refer also to the
conserved angular momentum J � R2d�=d	 ¼ const ¼
J0. For a particular source, the angle � is the coordinate
equivalent to � for the observer, and in particular �0 is the
coordinate � of a photon that arrives at the observer at the
time of observation t0. Obviously this coincides with the
measured position in the sky of such a source at t0. In terms
of these variables, and defining 	 such that uð	Þ< 0, the
autonomous system governing the geodesics is written as

dt

d	
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR0Þ2
1þ �

p2 þ J2

R2

s
;

dr

d	
¼ p;

d�

d	
¼ J

R2
;

dz

d	
¼ ð1þ zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðR0Þ2=ð1þ �Þ�p2 þ J2

R2

q
�
R0 _R0

1þ �
p2 þ _R

R3
J2
�
;

dp

d	
¼ 2 _R0p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

1þ �
þ J2

R2R02

s
þ 1þ �

R3R0 J
2

þ
�

�0

2þ 2�
� R00

R0

�
p2: (7)

Following [5], the angle � along a geodesic is given by

cos� ¼ �R0ðt; rÞp=½u ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðrÞp �, from which we obtain

p0 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðr0Þ

p
cosð�0Þ=R0ðt0; r0Þ and J0 ¼ J ¼

Rðt0; r0Þ sinð�0Þ. Therefore, our system is completely de-
fined by the initial conditions t0; r0; �0 ¼ 0; z0 ¼ 0 and �0.
The first two define the instant of measurement and the
offset between observer and center, while �0 stands for the
direction of incidence of the photons. By integrating the
geodesic equations for two sources located at (za1, zb1, �a1,
�b1) after a time interval �t the CP will be �t� � �2 �
�1 ¼ ð�a2 � �b2Þ � ð�a1 � �b1Þ.

The models of Ref. [5] are characterized by a smooth
transition between an inner void and an outer region with
higher matter density and are described by the functions
�ðrÞ and �ðrÞ [Eqs. (28) and (29) in [5]], themselves
carrying a total of four free parameters, together with the
valueHout

?;0 of the Hubble constant at the outer region, set at

51 km=ðsMpcÞ. Following [5] we dub them model I and
model II; the main difference between them is that model II
features a sharper transition from the void. However, tran-

sition width is not expected to be an important factor in CP
since most quasars are outside the void and the most
relevant quantity is the difference between the inner and
outer values of H. In both cases we set the off-center
(physical) distance to 15 Mpc, which is the upper limit
allowed by CMB dipole distortions [5], and this corre-
sponds to s ’ 4:4� 10�3 for a source at z ¼ 1. It can be
shown that in a steplike LTB void model, the HX in (2) is
given by Hin

k;0Xvo=X þHout
k;0ð1� Xvo=XÞ � Hout

k;0 , whereas
Hobs � Hin

k;0.
In Fig. 2 we plot �t� for three sources at z ¼ 1, for

models I and II as well as for the FRW-like estimate. One
can see that the results do not depend sensitively on the
details of the shell transition and that in both cases the
FRW-like estimate gives a reasonable idea of the true
LTB behavior. We conclude that (2) is a valid approxima-
tion. Numerically, we find that a convenient estimate
of the parallax is given by �t� ¼ 100s�hð�t=10 yrÞ �
ð��;�z=zÞ �as. For the LTB models above �h �
0:12–0:14.
Integrating (7) yields also another interesting observ-

able, _z ¼ �tz=�t, coupled to the CP: together they form a
new set of real-time cosmic observables. Reference [14]
calculated _z for an observer at the center of a LTB model.
In the limit of small s our numerical results reveal that _z for
off-center observers show very small angular dependence.
Cosmic parallax with Gaia.—A realistic possibility of

observing the CP is offered by the forthcoming Gaia mis-
sion. Gaia will produce in five years a full-sky map of
roughly 500 000 quasars; by making of order 100 repeated
measurements over the 5 yr mission, Gaia will hopefully
achieve a positional error p between 10 and 200 �as (for
quasars with magnitude V ¼ 15–20). To compare our ob-
servations to Gaia we need to evaluate the average �t�
with �t ¼ 5 yr and N sources. The final Gaia error p is
obtained by best fitting 2N independent coordinates from
N2=2 angular separation measures; the average positional

error on the entire sky will scale therefore as ð2NÞ�1=2.
Over one hemisphere we can therefore estimate that the

FIG. 2 (color online). �t� for three sources at the same shell,
at z ¼ 1, for both model I (full lines) and model II (dashed lines),
and the FRW-like estimate (dotted lines). As expected, �t� is
linear in ��.
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error scales as p=
ffiffiffiffi
N

p
. Since the average angular separation

of random points on a sphere is 
=2, the average of �t�
can be estimated simply as �t�ð� ¼ 
=2Þ. We find nu-
merically �t�ð
=2Þ ¼ 10s �as, with little dependence on

�z. Therefore Gaia can see the parallax if p=
ffiffiffiffi
N

p
<

10s �as. For s ¼ 4:4� 10�3 (i.e., the current CMB limit)
and p ¼ 30 �aswe needN * 450 000 sources: this shows
that Gaia can constrain the cosmic anisotropy to CMB
levels. An enhanced Gaia mission with �t ¼ 10 yr (or
two missions five years apart), p ¼ 10 �as and N ¼ 106

would give s < 5� 10�4, i.e., r0 < 1 Mpc if we assume
the sources are at 2 Gpc. Two caveats of this preliminary
estimate are, however, to be kept in mind. First, to map the
angular change, Gaia’s observing strategy should be rede-
signed in order to maximize the time interval between
quasar observations. Second, being planned to monitor
the local matter distribution, Gaia’s error estimates are
based on using a fraction of the quasars as a reference
frame. Observing the quasar CP would require a different
statistical analysis. Both effects are likely to increase the
expected final error.

Two local effects induce spurious parallaxes: one (of
the order of 0:1 �as yr�1) is induced by our own peculiar
velocity and the other (of the order of 4 �as yr�1 [21] by a
changing aberration. Both produce a dipolar signal, just
like a LTB; however, the peculiar velocity parallax de-
creases monotonically with the angular diameter distance,
while the aberration change is independent of distance
[21]. In contrast, the LTB signal has a characteristic non-
trivial dependence on redshift: for the models investigated
here it is vanishingly small inside the void, large near the
edge, decreasing at large distances. It is therefore possible
in principle to subtract the cosmic signal from the local
one, for instance estimating the local effects from sources
inside the void, including Milky Way stars. A detailed
calculation needs a careful simulation of experimental
settings (including possibly effects like source photocenter
jitter and relativistic light deflection by solar system
bodies), which is outside the scope of this Letter.
Moreover, more general anisotropic models will not pro-
duce a simple dipole.

Conclusions.—Planned space-based astrometric mis-
sions aim at accuracies of the order of few microarcsec-
onds. In this Letter we have shown that the cosmic paral-
lax of distant sources in a LTB model might be observable
employing the same missions. Similar considerations
would apply to all other anisotropic cosmological models
as, e.g., the Bianchi models. A positive detection of
large-scale CP would disprove, therefore, one of the basic
tenets of modern cosmology, isotropy. We have shown that
for a typical LTB model designed to explain the
supernovae Ia Hubble diagram, an enhanced Gaia experi-
ment could constrain the anisotropy parameter s to less
than 10�3, corresponding to the Megaparsec scale, much
better than current CMB dipole limits [5]. Moreover, this

test may probe a different range of scales depending on the
quasar redshift distribution and, contrary to the CMB
limits, the CP method cannot be completely undermined
by the observer’s peculiar motion and is limited only by
source statistics instead of by the cosmic variance. We
anticipate, however, that the major source of systematics
would be the subtraction of the aberration change parallax.
Real-time cosmology directly tests cosmic kinematics by
observing changes in source positions and velocities. We
have shown that the cosmic parallax, along with the veloc-
ity shift effect _z, can fully reconstruct the 3D cosmic flow
of distant sources.
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