
Cosmology from an Anti-de Sitter–Schwarzschild Black Hole via Holography

Pantelis S. Apostolopoulos,1,* George Siopsis,2,† and Nikolaos Tetradis3,‡

1Departament de Fı́sica, Universitat de les Illes Balears, Carretera Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain
2Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996-1200, USA

3Department of Physics, University of Athens, University Campus, Zographou 157 84, Greece
(Received 2 October 2008; published 13 April 2009)

We derive the equations of cosmological evolution from an anti-de Sitter–Schwarzschild black hole via

holographic renormalization with appropriate boundary conditions.
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The effect of extra dimensions demanded by string
theory on cosmology has been extensively investigated.
In a popular scenario [1], one considers a three-brane
within a higher-dimensional bulk. The cosmological evo-
lution of the brane [2] is equivalent to its motion within the
bulk space [3]. The bulk may be occupied by a black hole,
or a more complicated (or unknown) solution to the
Einstein field equations [4,5]. The second possibility seems
more appropriate for a cosmological setup and allows for
energy exchange between the brane and the bulk [6].

Without the brane-world assumption, the connection of
the AdS/CFT correspondence to cosmology is elusive. Our
aim is to understand how cosmological evolution emerges
in the context of AdS/CFT [7]. We shall show that the
equations of cosmological evolution emerge via holo-
graphic renormalization [8], even when one starts from a
static anti-de Sitter–Schwarzschild black hole, provided
the boundary conditions are chosen appropriately.

In general, one starts with a solution to the bulk Einstein
equations with a negative cosmological constant and pro-
ceeds to compute the properties of the dual gauge theory at
strong coupling on the anti-de Sitter (AdS) boundary. One
usually fixes the geometry of the boundary by adopting
Dirichlet boundary conditions. However, in order to obtain
cosmological evolution, the boundary geometry must re-
main dynamical. Changing the boundary conditions in
order to accommodate a dynamical boundary metric may
lead to fluctuations of the bulk metric which are not
normalizable [9]. It was recently shown that such fears
are unfounded, and the boundary geometry can be dynami-
cal if one correctly introduces boundary counterterms
needed in order to cancel infinities [10].

We shall concentrate on an AdS-Schwarzschild black
hole in five dimensions, which is a solution to the Einstein
field equations with a negative cosmological constant
(�5 ¼ �6=l2),

RAB ¼ 2

l2
gAB; (1)

where A, B ¼ 0, 1, 2, 3, 4. The metric can be written in
static coordinates as

ds2¼�fðrÞdt2þ dr2

fðrÞþr2d�2
k; fðrÞ¼ r2þk��

r2
;

(2)

where k ¼ þ1, 0, 1 for spherical, flat, and hyperbolic
horizons, respectively. We set l ¼ 1 for simplicity.
The Hawking temperature and mass of the hole are,

respectively,

TH ¼ 2r2þ þ k

2�rþ
; M ¼ 3Vk

16�G5

r2þðr2þ þ kÞ; (3)

where Vk is the volume of the three-dimensional space �k

spanned by �k, rþ is the radius of the horizon, and G5 is
Newton’s constant in the bulk.
The Einstein equations (1) are obtained by varying the

bulk action IM. This is a five-dimensional Einstein-Hilbert
action on M with a cosmological term. It also includes a
Gibbons-Hawking boundary term, as well as boundary
counterterms needed to render the system finite. In addition
to the black hole solution in the bulk, the variation of the
action in general yields a boundary term

�IM ¼ 1

2

Z
@M

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detgð0Þ

q
TðCFTÞ
�� �gð0Þ��; (4)

where gð0Þ�� (�, � ¼ 0, 1, 2, 3) is the boundary metric and

TðCFTÞ
�� the stress-energy tensor of the dual conformal field

theory (CFT) on the AdS boundary @M.

If one adopts Dirichlet boundary conditions that fix gð0Þ��,
the additional term (4) vanishes. As we are interested in

keeping gð0Þ�� dynamical, following [10], we shall adopt
mixed boundary conditions instead (see also [11]). To
define them, we shall introduce a boundary action consist-
ing of two terms,

I@M ¼ IðEHÞ@M þ IðmatterÞ
@M : (5)

The first term is the Einstein-Hilbert action in four dimen-
sions

IðEHÞ@M ¼ � 1

16�G4

Z
@M

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detgð0Þ

q
ðR� 2�4Þ; (6)

where G4 (�4) is Newton’s constant in the four-
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dimensional boundary and R the four-dimensional Ricci

scalar (constructed from gð0Þ��). The second term is an
unspecified action for matter fields,

IðmatterÞ
@M ¼

Z
@M

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detgð0Þ

q
LðmatterÞ: (7)

The matter fields reside on the boundary and have no bulk
duals.

To the variation of the bulk action (4) we must now add
the variation of the new boundary action �I@M, given by
(5), under a change in the boundary metric. Demanding
that the sum vanish

�IM þ �I@M ¼ 0 (8)

leads to two possibilities: (a) Dirichlet boundary condi-

tions, i.e., fixed gð0Þ��, or (b) mixed boundary conditions:

R �� � 1

2
gð0Þ��R��4g

ð0Þ
�� ¼ 8�G4ðTðCFTÞ

�� þ TðmatterÞ
�� Þ:

(9)

The latter, which we shall adopt, are nothing but the
Einstein field equations in four dimensions. Moreover,
the variation of the boundary matter action (7) under a
change in the matter fields leads to the standard four-
dimensional matter field equations.

In [10], it was shown that a general form of I@M½gð0Þ�
leads to a sensible theory with normalizable metric fluctu-
ations. Matter fields were not considered. However, the
framework may be extended to include boundary matter
fields. If one integrates over them in the path integral, an
effective action is obtained as a functional of the boundary

metric gð0Þ. For this effective action, the discussion in [10]
is applicable.

In order to understand the AdS/CFT correspondence, it
is useful to write the metric in terms of Fefferman-Graham
coordinates [12]. Define z through

dz

z
¼ � drffiffiffiffiffiffiffiffiffi

fðrÞp (10)

which gives (with an appropriate integration constant)

z4 ¼ 16

k2 þ 4�

r2 þ k
2 � r

ffiffiffiffiffiffiffiffiffi
fðrÞp

r2 þ k
2 þ r

ffiffiffiffiffiffiffiffiffi
fðrÞp : (11)

This equation may be inverted to give

r2 ¼ �þ �z2 þ �z4

z2
(12)

where

� ¼ 1; � ¼ � k

2
; � ¼ k2 þ 4�

16
: (13)

The metric (2) reads

ds2 ¼ 1

z2

�
dz2 � ð1� �z4Þ2

1þ �z2 þ �z4
dt2 þ ð1þ �z2

þ �z4Þd�2
k

�
: (14)

The energy of the dual conformal field theory on the
AdS boundary is found through holographic renormaliza-
tion. For a metric in the form

ds2 ¼ 1

z2
½dz2 þ g��dx

�dx�� (15)

where

g�� ¼ gð0Þ�� þ z2gð2Þ�� þ z4gð4Þ�� þ � � � (16)

the stress-energy tensor of the CFT is [8]

hTðCFTÞ
�� i ¼ 1

4�G5

�
gð4Þ � 1

4
gð2Þgð0Þgð2Þ

þ 1

4
trðgð2Þðgð0ÞÞ�1Þgð2Þ � 1

8
f½trðgð2Þðgð0ÞÞ�1Þ�2

� trðgð2Þðgð0ÞÞ�1Þ2ggð0Þ
�
��
: (17)

Applying this general expression to our metric (14), we
obtain the energy density and pressure, respectively,

hTðCFTÞ
tt i ¼ 3hTðCFTÞ

ii i ¼ 3�

4�G5

(18)

on the static Einstein universe R��k with metric

ds20 ¼ gð0Þ��dx�dx� ¼ �dt2 þ d�2
k: (19)

Notice that the total energy E ¼ hTðCFTÞ
tt iVk is larger than

the mass of the black hole [Eq. (3)] by a constant (Casimir
energy) in the case of a curved horizon (k � 0). The two
quantities agree for flat horizons (k ¼ 0). We shall show
that the additional piece can be understood by a change of
the vacuum state from Minkowski vacuum to the confor-
mal vacuum. [Note that the curved metrics (19) can be
conformally mapped on the Minkowski space.]
For general cosmological applications, instead of the

static boundary considered above [with metric (19)], we
need a boundary with the form of a Robertson-Walker
spacetime

ds20 ¼ gð0Þ��dx�dx� ¼ �d�2 þ a2ð�Þd�2
k; (20)

on which to apply holographic renormalization. To this
end, we need to choose a different foliation away from the
black hole, consisting of hypersurfaces whose metric is
asymptotically of the form (20). Therefore, we need to
make a change of coordinates ðt; rÞ ! ð�; zÞ and bring the
black hole metric (2) in the form

ds2 ¼ 1

z2
½dz2 �N 2ð�; zÞd�2 þA2ð�; zÞd�2

k�; (21)
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where N ð�; zÞ ! 1 and Að�; zÞ ! að�Þ as we approach
the boundary z ¼ 0. Comparison with the static case
[Eq. (12)] suggests the ansatz

A 2 ¼ �ð�Þ þ �ð�Þz2 þ �ð�Þz4; (22)

where �ð�Þ, �ð�Þ, �ð�Þ are functions to be determined.
The function N is constrained by the �z component of

the Einstein equations (1) to be of the form

N ¼
_A

�ð�Þ : (23)

Agreement with the boundary metric (20) then fixes

�ð�Þ ¼ a2ð�Þ; �ð�Þ ¼ _að�Þ: (24)

The diagonal components of the Einstein equations collec-
tively yield

� ¼ � _a2 þ k

2
: (25)

The rest of the Einstein equations are satisfied provided

� _� ¼ 2ð _��þ � _�Þ; (26)

which may be integrated to give

� ¼ ð _a2 þ kÞ2 þ 4�

16a2
; (27)

where we fixed the integration constant by comparing with
the static case [Eq. (13)].

Thus, the metric (21) is uniquely specified. It agrees with
the black hole metric (2) provided

ðr0Þ2
fðrÞ � fðrÞðt0Þ2 ¼ z�2 r0 _r

fðrÞ � fðrÞt0 _t ¼ 0

_r2

fðrÞ � fðrÞ _t2 ¼ �N 2z�2 r ¼ Az�1:
(28)

The last equation fixes rð�; zÞ. Two of the other three
equations may then be used to determine the derivatives _t
and t0. We obtain

_t ¼ �
_Ar0

f _a
; t0 ¼ � _a

zf
: (29)

In fact, these expressions satisfy all three equations. One
can then verify the consistency of the system (28) by
calculating the mixed derivative _t0 using each of the two
equations (29), and showing that the two expressions
match. Upon integration, we obtain a unique function
tð�; rÞ, up to an irrelevant constant. General explicit ex-
pressions are unwieldy and will not be reported here. For
example, for pure AdS space in Poincaré coordinates (� ¼
0, k ¼ 0), we obtain

tð�; zÞ ¼ � 2 _az2

4a2 � _a2z2
þ

Z � d�0

að�0Þ ; (30)

so that at the boundary (z ¼ 0), the coordinate t reduces to
conformal time

R
� d�0=að�0Þ, while it receives corrections

as we move into the bulk. This is generally the case.
However, general explicit expressions are not needed in
order to extract physical results because we already know
the explicit form of the metric in the new coordinates
[Eqs. (21)–(27)].
The stress-energy tensor of the dual CFT on the cosmo-

logical boundary (20) is determined via holographic renor-
malization [Eq. (17)]. We obtain the energy density and
pressure, respectively,

hðTðCFTÞÞ��i ¼ 3

64�G5

ð _a2 þ kÞ2 þ 4�

a4

hðTðCFTÞÞiii ¼
ð _a2 þ kÞ2 þ 4�� 4a €að _a2 þ kÞ

64�G5a
4

;

(31)

where no summation over i is implied. (i can be chosen in
any spatial direction due to isotropy.) We deduce the
conformal anomaly

gð0Þ��hTðCFTÞ
�� i ¼ � 3 €að _a2 þ kÞ

16�G5a
3
: (32)

The above results can also be derived directly from the
standard expressions for the energy and pressure of a
gauge-theory plasma in Minkowski space through an en-
tirely four-dimensional calculation. To this end, we ob-
serve that the Robertson-Walker metric (20) is conformally
equivalent to the flat Minkowski metric. The vacuum ex-
pectation value (31) is calculated in the conformal vacuum.
We may instead calculate the VEV in the Minkowski
vacuum, in which case we obtain the static plasma result.
The two VEVs are related through [13]

hTðCFTÞ
�� ijRW ¼ 1

a4
hTðCFTÞ

�� ijMinkowski þ aHð1Þ
�� þ bHð3Þ

��;

(33)

with

Hð1Þ
�� ¼ 2ðr�r� � gð0Þ��r2ÞR� 1

2
gð0Þ��R2 þ 2RR��

Hð3Þ
�� ¼ 1

12
R2��

� �R	
R	�

�: (34)

The curvature tensor R�
�	
 is derived from the

Robertson-Walker metric gð0Þ�� of Eq. (20). The coefficients
a and b are related to the conformal anomaly and depend
on the field content of the CFT. For a theory with nB spin-0
bosons, nF fermions, and nV vector fields, we have

a ¼ �nB þ 3nF � 18nV
1080ð4�Þ2 ; b ¼ nB þ 11

2 nF þ 62nV

180ð4�Þ2 :

(35)

For the N ¼ 4 UðNÞ super Yang-Mills theory, we have
nB ¼ 6N2, nF ¼ 4N2, and nV ¼ N2. Therefore,
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a ¼ 0; b ¼ N2

32�2
: (36)

After some algebra, Eq. (33) is seen to agree with (31),
with G5 � N�2.

The temperature on the boundary may also be under-
stood by comparing with the case of a static plasma. For a
plasma in the static Einstein universe (19), the temperature
coincides with the Hawking temperature TH of the black
hole (3). Since the RW metric (20) is conformally equiva-
lent to (19), the conformal factor being a2, the Euclidean
proper time period of thermal Green functions in the RW
metric scales as a. As a result, the temperature T of the
universe (inversely proportional to the period) scales as
a�1. It coincides with TH when a ¼ 1.

Finally, the boundary conditions (9) yield the equation
of cosmological evolution [5]

H2 þ k

a2
��4

3
¼ 1

16�G5

��
H2 þ k

a2

�
2 þ 4�

a4

�

þ 8�G4

3
	; (37)

where 	 ¼ TðmatterÞ
00 is the energy density of four-

dimensional ‘‘ordinary’’ matter (without a bulk dual) and
we have introduced the Hubble parameter H ¼ _a=a. This
equation has the expected form, reflecting the conformal
anomaly and the presence of a radiative energy component
whose energy density scales �a�4.

We have discussed how the equations of cosmological
evolution can be obtained in the context of the AdS/CFT
correspondence. Two essential elements are necessary:
(a) the choice of appropriate boundary conditions so that
the boundary metric becomes dynamical, and (b) the deri-
vation of the gravity solution in terms of coordinates such
that the boundary metric has the Robertson-Walker form.
We have demonstrated that the procedure correctly repro-
duces the expected four-dimensional cosmological behav-
ior, starting from a static AdS-Schwarzschild five-
dimensional solution. The challenge for the future is to
repeat the procedure for gravity duals of more realistic
theories. This requires the deviation from conformal in-
variance and the presence of additional fields. This proce-
dure may lead to the understanding of the nonperturbative
aspects of cosmological phase transitions. For example, the
deconfinement phase transition could be discussed starting
from a holographic QCD model [14].
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