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Microscopic models of classical degrees of freedom coupled to noninteracting fermions occur in many

different contexts. Prominent examples from solid state physics are descriptions of colossal magnetore-

sistance manganites and diluted magnetic semiconductors, or auxiliary field methods for correlated

electron systems. Monte Carlo simulations are vital for an understanding of such systems, but notorious

for requiring the solution of the fermion problem with each change in the classical field configuration. We

present an efficient, truncation-free OðNÞ method on the basis of Chebyshev expanded local Green

functions, which allows us to simulate systems of unprecedented size N.
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The numerical simulation of quantum lattice models is a
key tool in solid state research and many other fields of
physics. One class of problems, which is notoriously diffi-
cult to study, are fermions coupled to classical degrees of
freedom. Such microscopic models can arise if parts of a
complex system are approximated classically. A prominent
example is the double-exchange model, which describes
the ferromagnetism of mixed-valence manganites on the
basis of classical t2g-spins whose orientation affects the

kinetic energy of eg valence electrons [1–3]. Another

example are Mn-doped (III,V) semiconductors, where itin-
erant holes trigger a ferromagnetic ordering of the Mn
spins [4]. A completely different route that leads to a
coupling of fermions and classical degrees of freedom
are the auxiliary field methods, which tackle the problem
of interacting fermions. Here, a Hubbard-Stratonovich
transformation is used to decouple the two-body interac-
tion into noninteracting fermions in an auxiliary field,
which is summed over with Monte Carlo methods [5,6].

For all these systems the cause of the numerical diffi-
culty is the requirement for a solution of the noninteracting
fermion problem whenever the classical field is varied in a
Monte Carlo simulation. We propose an efficient local-
update algorithm, which obtains the change in fermionic
energy directly from a few local Green functions. These
Green functions can easily be calculated by Chebyshev
expansion, superseding estimates of the density of states
and thus trace calculations. We illustrate the efficiency of
the approach with simulations of the double-exchange
model.

The models we consider in this work are of the general
form

H ¼ X
ij

cyi Aijð ~�Þcj; (1)

where cðyÞi are fermion creation (annihilation) operators at

lattice site i, and ~� is a classical field with one or more
components at each site. For example, the double-

exchange model [7,8] is given by the Hamiltonian

H ¼ �X
hiji

tijc
y
i cj; (2)

where the summation is over nearest-neighbor sites and the
hopping tij depends on the orientation f�i; �ig of classical
local spins at each site,

tij ¼ cos
�i � �j

2
cos

�i ��j

2
þ i cos

�i þ �j
2

sin
�i ��j

2
:

(3)

This complex matrix element is one for ferromagnetically
aligned spins and vanishes for antiferromagnetic align-
ment. At low temperature the system favors ferromagne-
tism, since it can gain kinetic energy.
The thermodynamics is described by the partition func-

tion Z ¼ Trc Trf exp½��ðHð ~�Þ ��NÞ� and its deriva-

tives. Here the traces Trc and Trf sum over the classical

and fermionic degrees of freedom, respectively. The fer-
mionic trace can be rewritten in terms of the single-particle
eigenvalues �i of H, such that the grand potential of the
fermions times �,

Seffð ~�Þ ¼ �X
i

logð1þ expf��½�ið ~�Þ ���gÞ; (4)

defines an effective Euclidean action for the classical

degrees of freedom, Z ¼ Trc exp½�Seffð ~�Þ�. The second
trace over the classical field can then be calculated with a
standard Monte Carlo sampling, where the weight of a

configuration ~� is given by Pð ~�Þ ¼ exp½�Seffð ~�Þ�=Z.
However, a nontrivial problem remains: To calculate

Pð ~�Þ we need to know the spectrum f�ig of the noninter-
acting fermion system, or at least its change under a

proposed Monte Carlo update ~� ! ~�
0
.

There are different solutions to this problem: We could

use brute force and calculate all eigenvalues of Aijð ~�Þ
whenever ~� is modified. For local-update schemes this
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is, of course, very expensive and imposes severe restric-
tions on the accessible system sizes. As a way out, hybrid
approaches [9–12] have been suggested, where updates of
the whole field configuration are calculated with an ap-
proximate dynamics. Then, the solution of the full fermion
problem in the acceptance step is required less frequently.
However, if the approximate dynamics does not closely
match the exact one, the acceptance rate drops markedly, in
particular, for increased system size. Therefore, these ap-
proaches crucially depend on the quality of the approxi-
mate action.

Staying with local updates of the classical field one can
try to optimize the calculation of the fermion spectrum.
Motome and Furukawa [13] suggested a Chebyshev ex-
pansion of the fermion density of states, which can be
calculated with an effort proportional to the square of the
system size N. A further modification [14,15], involving
several truncations in the moment calculation, reduced the
effort to order N.

In another recent approach [16], the evolution of the

eigenvalues of Aijð ~�Þ under small local changes of ~� is

tracked using special techniques for low-rank matrix up-
dates [17]. Then again, the full solution of the fermion
problem is required only occasionally. In the best case this
leads to N logN scaling.

In the present work we combine ideas from the last two
approaches and directly calculate the change of the fer-
mion density of states using a few real space Green func-
tions. Relying on Chebyshev expansion these can be
calculated with an effort proportional to the system size
N. Without any truncations we arrive at an order-N
algorithm.

Let us start from the Hamiltonian H with the Hermitian
hopping matrix A and ask how the spectrum changes, when
a local modification� is added. Given aðEÞ ¼ A� E1 and
its inverse GðEÞ, i.e., the Green function with GðEÞaðEÞ ¼
1, the spectrum of Aþ� follows from ðAþ�Þjc i ¼
Ejc i or ðaðEÞ þ �Þjc i ¼ 0. Right multiplication with
GðEÞ yields

GðEÞðaðEÞ þ�Þjc i ¼ ð1þGðEÞ�Þjc i ¼ 0: (5)

The spectrum of Aþ� is given by those values of E,
where the determinant

dðEÞ :¼ detð1þGðEÞ�Þ (6)

vanishes. Recalling introductory lectures on Green func-
tions (see, e.g., Ref. [18]) we note that this N-dimensional
determinant reduces to one with a dimension equal to the
rank of �. For local Monte Carlo updates this is a small
number. If we change, for instance, the on-site potential, �
has a single nonzero matrix element and we merely need
the local Green function of the corresponding site. For the
double-exchange model a single spin flip affects the hop-
ping between the site and its nearest neighbors.
Independent of the system size N or the space dimension,

Eq. (6) then reduces to a 2� 2 problem, i.e., we need only
four Green functions connecting the site with its environ-
ment and both to themselves.
Before we go into the details of calculating dðEÞ, let us

further analyze the meaning of this quantity. Going back to
Eq. (5) we have

dðEÞ ¼ det½GðEÞðaðEÞ þ �Þ� ¼ det½GðEÞ� det½aðEÞ þ��:
(7)

This can be expressed in terms of the eigenvalues f�ig of A
and f�0ig of Aþ �,

dðEÞ ¼ Y
i

1

�i � E

Y
i

ð�0i � EÞ: (8)

An important trick of our new approach consists of going
to the complex plane, E ! z :¼ Eþ i", and taking a
logarithmic derivative. We now observe that dðEÞ deter-
mines exactly what we need for the Monte Carlo update:
the change in the density of states going from A to Aþ�,

i.e., from ~� to ~�
0
,

1

�
Im lim

"!0

d logðdðzÞÞ
dz

¼ 1

�
Im lim

"!0

X
i

1

�i � z
� 1

�0i � z

¼ X
i

�ð�i � EÞ � �ð�0i � EÞ

¼ �ðEÞ � �0ðEÞ: (9)

The change in the effective action then reads

Seffð ~�0Þ�Seffð ~�Þ¼
Z
logð1þe��ðE��ÞÞð�ðEÞ��0ðEÞÞdE

¼�

�

Z 1

1þe�ðE��Þ

� Imlim
"!0

logðdðEþ i"ÞÞdE; (10)

where in the last line partial integration led to an integral
over the Fermi function. The key role of dðzÞ has already

FIG. 1 (color online). (a) Labeling of the nearest-neighbor
sites on a cubic lattice. (b) Comparison of Im logðdðEþ i"ÞÞ
calculated from exact eigenvalues �i, �

0
i and with Chebyshev

expansion of order M ¼ 512 (" ¼ 0:0625) for a 63 site sample.
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been noted earlier [19,20], but the evaluation of Eq. (6)
becomes feasible only if we can restrict ourselves to a
minimal set of Green functions and an efficient, direct
method for their calculation.

Let us now explain this main part of our new approach
for the double-exchange model on a cubic lattice. Here, a
local update consists of rotating a single spin at a site o.
This modifies the matrix element tij between o and its

nearest neighbors (NN) to the north, east, south, and so
on. Labeling the sites according to Fig. 1(a), a naı̈ve
evaluation of Eq. (6) requires all 7� 7 Green functions
GijðzÞ with i; j 2 fo; n; e; s; w; t; bg [21]. However, we can
do much better observing that

dðzÞ ¼
�
1þ X

j2NN

�joGojðzÞ
��

1þ X
j2NN

�ojGjoðzÞ
�

�GooðzÞ
� X
j;k2NN

�jo�okGkjðzÞ
�

(11)

can be expressed in terms of only 2� 2 Green functions,

dðzÞ ¼ ½1þGovðzÞ�½1þGvoðzÞ� �GooðzÞGvvðzÞ; (12)

which connect the original site o and the environment state

jvi ¼ �joi ¼ X
j2NN

�jojji: (13)

All four Green functions can be calculated easily with
the Chebyshev expansion approach outlined in a recent
review [22]. In a nutshell, diagonal elements GiiðzÞ are
expanded in terms of the Chebyshev polynomials of first
and second kind, Tm and Um, respectively,

GiiðEþ i"Þ ¼ i½�0 þ 2
P

M�1
m¼1 �mTmðE=sÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � E2

p

þ 2
XM�1

m¼1

�mUm�1ðE=sÞ

¼ i
�0 þ 2

P
M�1
m¼1 �m exp½�im arccosðE=sÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � E2
p :

(14)

The expansion coefficients �m are Chebyshev moments
modified by appropriate kernel factors, which improve the
convergence of the truncated series and damp Gibbs oscil-
lations,

�m ¼ hijTmðH=sÞjii sinh½	ð1�m=MÞ�= sinh	: (15)

The scaling factor s ensures that the spectrum of the
Hamiltonian H=s falls within the domain of the
Chebyshev polynomials ½�1; 1�. For the double-exchange
model we can choose s to be a little larger than the bare
bandwidth in the ferromagnetic case, s > 6. The kernel
parameter 	 regulates the resolution of the method versus
the damping of Gibbs oscillations. A good value is 	 ¼ 4.
The resolution at which the Green function is approxi-

mated is given by " ¼ 	s=M. The limit " ! 0 thus corre-
sponds to infinite expansion order M. In a numerical
simulation, of course, M is always finite and we need to
extrapolate data for differentM to obtain the limiting value

of Seffð ~�0Þ � Seffð ~�Þ. Since in Eq. (10) we integrate a
function of GijðzÞ over the Fermi function, the maximal

resolution should be better than the thermal broadening of
the Fermi step, which is of the order of 1=�. Low tem-
peratures, therefore, require higher expansion orders.
The most time-consuming step of the whole simulation

is the calculation of the moments hijTmðH=sÞjii. Using the
recursion relation

TmðxÞ ¼ 2xTm�1ðxÞ � Tm�2ðxÞ (16)

it reduces to sparse matrix-vector multiplications, the cost
of which scales linearly with the system size N. With a
further trick based on T2mþi ¼ 2TmTmþi � Ti for i ¼ 0, 1
we obtain two moments per matrix-vector multiplication.
Moreover, half of the moments vanish due to the relation
jvi ¼ �joi and the special structure of the Chebyshev
recursion (16).
At this point we should also note the advantage over

approaches based on a full expansion of the density of
states: For the latter the moments are given by traces,
�m � TrfTmðH=sÞg, instead of simple expectation values.
Unless truncated or otherwise approximated [14], their
calculation requires OðN2Þ operations.
So far we have discussed only the diagonal Green func-

tions Gii. In Ref. [22] we showed that symmetric Green
functions Gij ¼ Gji can be expanded in the same manner.

However, in the double-exchange model the spins induce
local magnetic fields which break this symmetry. We there-
fore derive the off-diagonal Green functions Gov and Gvo

from the two diagonal functions Goþv;oþv and Goþiv;oþiv.

With all required moments at hand we can evaluate the
sums in Eq. (14) with fast Fourier methods, calculate dðEÞ
with Eq. (12), and finally integrate over the Fermi function
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FIG. 2 (color online). Main panel: Magnetization versus tem-
perature for the double-exchange model on 3D clusters with
periodic boundary conditions (N ¼ L3). Inset: Binder ratio U4

showing a crossing near T � 0:134.

PRL 102, 150604 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

17 APRIL 2009

150604-3



to obtain the change of Seff . In Fig. 1(b) we show a typical
example of Im logðdðEþ i"ÞÞ and compare the expansion
with the exact result from a full diagonalization.

Having explained the technical details of the approach
let us now illustrate its applicability with a few results for
the double-exchange model (2) at half filling,� ¼ 0. In the
main panel of Fig. 2 we show the magnetization as a
function of temperature, where the latter is measured in
units of the maximal hopping amplitude t � 1. As ex-
pected, we observe a phase transition to a ferromagneti-
cally ordered phase below T � 0:14. A closer inspection
based on the Binder parameter U4 ¼ 1� hm4i=ð3hm2i2Þ
[23] yields the estimate Tc � 0:134; see the inset of Fig. 2.
This agrees with previous estimates [11,13,14] of the criti-
cal temperature, which range between 0.128 and 0.139.

The data in Fig. 2 is based on expansions of order M ¼
256 and averages over 6000 to 20 000 Monte Carlo steps in
the critical region, where one step corresponds to N spin
flips. It is the low resource consumption which allows for
these far more precise calculations compared to previous
studies [13,14], which were based on Chebyshev expan-
sions of orderM � 20. Note also that we can handle much
larger systems with N ¼ 303 sites, i.e., a complex matrix
dimension of 27 000.

To visualize the spatial structure of the spin field we
imagine it as a liquid flow and draw curves tangent to the
velocity field. These stream lines are regular and parallel in
the ordered phase, but quite irregular and swirled near and
above the phase transition; see Fig. 3. Of course, this
visualization method fails for truly disordered spin fields.

In summary, we have presented an efficient local-update
scheme for Monte Carlo simulations of classical fields
coupled to fermions. At the core of the approach is an
expression which relates the change of the fermion spec-
trum to a few local Green functions. These can be calcu-
lated easily with Chebyshev expansion. Compared to
similar expansion approaches a full trace over the fermion
system is spared, which directly leads to a fast and precise

order-N algorithm. Possibly our method can be further
accelerated using the approximations inherent in the trun-
cated polynomial expansion method [14,15].
The calculations presented were performed on the

TeraFLOPS cluster of the Institute for Physics at
Greifswald University.
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different temperatures visualized with stream lines.
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