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We propose a general numerical approach to open quantum systems with a coupling to bath degrees of

freedom. The technique combines the methodology of polynomial expansions of spectral functions with

the sparse grid concept from interpolation theory. Thereby we construct a Hilbert space of moderate

dimension to represent the bath degrees of freedom, which allows us to perform highly accurate and

efficient calculations of static, spectral, and dynamic quantities using standard exact diagonalization

algorithms. The strength of the approach is demonstrated for the phase transition, critical behavior, and

dissipative spin dynamics in the spin-boson model.
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Whenever a small quantum object, such as an atom,
molecule, or quantum dot, is not perfectly isolated, it
couples to the degrees of freedom of its environment. In
such an open quantum system, the environment acts as a
‘‘bath’’ with which to exchange particles or energy. A
fermionic bath serves as a particle reservoir, while a bo-
sonic bath accounts for dissipation [1]. Since the interest is
only in the influence of the environment on the small
quantum object, one may suspect that phenomenological
descriptions of open quantum systems, e.g., by Lindblad
equations for dissipative baths, are sufficient. But, in gen-
eral, correlations between the quantum system and the bath
evolve, which can lead to strong renormalization as in the
Kondo effect or determine the time evolution of observ-
ables in unexpected ways. Simple phenomenological de-
scriptions are obtained only within potentially unwarranted
approximations such as weak coupling perturbation theory.
To perform reliable computations for open quantum sys-
tems including correlations with the environment is a
challenging problem for theoreticians.

A generic and important example of an open quantum
system is the spin-boson model [2]. Its Hamiltonian

H ¼ �

2
�x þ

X
i

�iðbyi þ biÞ�z þ
X
i

!ib
y
i bi � ��z (1)

describes a spin-1=2 (with Pauli matrices �i) coupled to a
bosonic bath of oscillators, whose dynamics is given by

HB ¼ P
i!ib

y
i bi. The spin-boson coupling is specified by

the spectral function

Jð!Þ ¼ X
i

�2
i �ð!�!iÞ ¼ �

2
!1�s

c !s�ð!c �!Þ; (2)

with a power-law dependence / !s up to a cutoff fre-
quency !c (we set !c ¼ 1 in the examples below). The
spin-boson model shows rich physics beyond the dissipa-
tive spin dynamics at weak coupling. In the sub-Ohmic
(Ohmic) regime s < 1 (s ¼ 1), the model undergoes, for

� ¼ 0, a quantum phase transition (QPT) from a nonde-
generate ground state with zero magnetization m ¼ h�zi
below a critical coupling �c ¼ �cð�; sÞ to a twofold-
degenerate ground state with finite m � 0 for �> �c.
The existence of the QPT is a consequence of the coupling
of the spin to bosons at low frequencies, which may
entirely suppress the spin dynamics. In that respect, the
spin-boson model captures the renormalization aspect of
Kondo physics.
Only a few methods are capable of accessing the QPT in

the sub-Ohmic spin-boson model. Among them we find
powerful numerical techniques such as the numerical re-
normalization group (NRG) [3,4] or quantum Monte Carlo
(QMC) [5] methods. Prominently missing in the above
enumeration are techniques from the field of exact diago-
nalization (ED), which are otherwise routinely used to
yield highly accurate and unbiased results for strongly
correlated systems [6]. ED techniques require a finite-
dimensional matrix representation of the model
Hamiltonian. Once the matrix is given, the Lanczos algo-
rithm allows for the calculation of the ground state and a
few excited states, while Chebyshev expansion techniques
such as the kernel polynomial method (KPM) [7] provide
dynamic properties, e.g., spectral functions at zero or finite
temperature, as well as the time evolution of the wave
function [8]. The main obstacle against this procedure for
the spin-boson model and open quantum systems, in gen-
eral, is that a finite Hamiltonian matrix involves discretiza-
tion of the continuous spectral density Jð!Þ. Naive
discretization, i.e., the approximate replacement of Jð!Þ
by a sum of � peaks, either requires a very large number of
bosonic orbitals, which leads to matrices beyond any ac-
cessible size, or obtains results spoiled by discretization
artifacts.
The sparse polynomial space representation (SPSR) that

we propose in this Letter overcomes the ED restriction. It
avoids the discretization of the bath spectral function Jð!Þ
and constructs a Hilbert space of moderate dimension to
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represent continuous bath degrees of freedom with high
resolution. In that way, the SPSR extends the Chebyshev
space method developed in Ref. [9], and it becomes pos-
sible to perform efficient and accurate calculations for
open quantum systems using ED algorithms. As a non-
trivial example, we analyze the QPT and the dissipative
spin dynamics in the spin-boson model.

The Hilbert space of the Hamiltonian (1) is the tensor
product of the spin space C2 with the bosonic Fock space
B. To set up the SPSR forB, we proceed in three steps: We
(i) parametrize multiple bosonic excitations through sym-
metric wave functions as in first quantization, (ii) expand
these wave functions into orthogonal polynomials, and
(iii) select a sparse subspace of the polynomial space.

For step (i) we fix a (unnormalized) density of states
Dð!Þ ¼ P

i�ð!�!iÞ on ½0; !c�, which must be a
smooth function for a continuous spectral function Jð!Þ.
In our numerics we use Dð!Þ / ð1� x2Þ�1=2, with x ¼
ð2!=!c � 1Þ 2 ð�1; 1Þ, which will lead to Chebyshev
polynomials in step (ii). In first quantization, any
n-boson state jc ni is represented by a totally symmetric
wave function c n: ½0; !c�n ! C; ~! � c nð ~!Þ. Here the
argument ~! ¼ ð!1; . . . ; !nÞ of the wave function gives
the boson energies. We find that HB multiplies the value
c nð ~!Þ to argument ~! by the total energy

P
i!i.

To express the Hamiltonian Eq. (1) in our calculations,

we further need the operators bðyÞ ¼ P
i�ib

ðyÞ
i . These are

bosonic operators up to normalization, since ½b; by� ¼P
i�

2
i ¼

R
d!Jð!Þ. We choose the function �ð!Þ such

that Jð!Þ ¼ �ð!Þ2Dð!Þ, or �ð!iÞ ¼ �i in comparison
to Eq. (1). Then the single-boson state byjvaci is repre-
sented by the wave function c 1ð!Þ ¼ �ð!Þ. Straight-
forward calculations show how to obtain the wave

functions of any state bðyÞjc ni. We note exemplarily that,
for a single-boson state jc 1i with wave function c 1ð!1Þ,
the state byjc 1i has wave function c 2ð!1; !2Þ ¼
½c 1ð!1Þ�ð!2Þ þ �ð!1Þc 1ð!2Þ�=

ffiffiffi
2

p
, while bjc 1i is the

scalar
R
d!Dð!Þ�ð!Þc 1ð!Þ.

For step (ii), note that the scalar product of wave func-
tions is given by

ðc n; �nÞ ¼
Z
½0;!c�n

Y
i

Dð!iÞd!ic
�
nð ~!Þ�nð ~!Þ: (3)

Therefore we choose polynomials Pm of degreem form �
0 subject to the orthonormality condition

Z !c

0
d!Dð!ÞPlð!ÞPmð!Þ ¼ �lm: (4)

For the above choice ofDð!Þ, the Pm are scaled and shifted
Chebyshev polynomials. Any wave function c nð ~!Þ has an
expansion

c nð ~!Þ ¼ X
~m

c ~m

Yn
i¼1

Pmi
ð!iÞ (5)

in that complete polynomial function system. Therefore

the multi-indices ~m enumerate the elements of an ortho-
normal basis of B. Instead with the wave function c nð ~!Þ
we can calculate with the (totally symmetric) coefficients
c ~m ¼ R

½0;!c�n d ~!
Q

i Dð!iÞPmi
ð!iÞc ð ~!Þ.

Generally, orthogonal polynomialsPm obey a three-term
recurrence [10] of the form Pmþ1 ¼ ðam!� bmÞPm �
cmPm�1. Owing to this recurrence, the multiplication
with

P
i!i occurring for the operator HB affects the co-

efficients c ~m only with index shifts by at most �1. To

obtain the operator bðyÞ we use the expansion �ð!Þ ¼P
m�mPmð!Þ and find, e.g., that byjvaci has coefficients

c m ¼ �m. Similarly, for a single-boson state jc i with
coefficients c m, the state byjc i has coefficients

c ðm1;m2Þ ¼ ðc m1
�m2

þ �m1
c m2

Þ= ffiffiffi
2

p
, while bjc i is the

scalar
P

�mc m.
The bosonic Fock space and all relevant operators are

now expressed by simple operations on a polynomial
space. To prepare step (iii), notice that the selection of a
finite-dimensional subspace containing all polynomials up
to degree Np is equivalent to naive discretization of Jð!Þ,
with Np þ 1 energy levels !i given as the zeros of

PNpþ1ð!Þ. This discrete grid requires ðnþNp

n Þ coefficients
to represent an n-boson state. To overcome the ‘‘curse of
dimension’’ expressed by the exponential growth of the
binomial with n, we resort to the concept of sparse grids
[11] from interpolation theory.
An n-dimensional sparse grid of level Ng is a subset of

the Cartesian grid with ð2Ng � 1Þn points (see Fig. 1). With
the sparse grid comes an interpolation formula that assigns
a polynomial to given function values at the sparse grid
points. This interpolation has the property that functions of
bounded variation are approximated with high accuracy
although the number of points is significantly smaller than
in the Cartesian grid. For our purposes, we do not access
the points of the sparse grid directly. Instead, we note that
the sparse grid interpolation formula is exact for a poly-
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FIG. 1 (color online). Left panel: Two-dimensional sparse grid
of level Ng ¼ 3 (circles) and Ng ¼ 4 (crosses). Right

panel: Spectral function Að!Þ ¼ h"; vacj�½!�H�j "; vaci for
� ¼ 0, s ¼ 0:5, and � ¼ 0:2 calculated using the KPM.
Keeping up to Nb ¼ 6 bosons, the SPSR to level Ng ¼ 10

contains 129 284 states. The comparable discrete grid
(134 596 states) contains only Np ¼ 18 orbitals (here at equi-

distant energies !i).
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nomial subspace of the full function space. Exactly this
sparse polynomial space is selected for the SPSR.
Assigning to a polynomial of degree m a logarithmic
‘‘cost’’ co½m� ¼ blog2ðmþ 1Þc (rounding down to an inte-
ger), we keep in step (iii) all polynomial basis states with
multi-indices that satisfy

co n½ ~m� ¼ Xn
i¼1

co½mi� � Ng: (6)

For a single bosonic excitation (n ¼ 1), the SPSR of level
Ng contains all polynomials with degree m< 2Ng � 1. For

n > 1, the SPSR contains only a small fraction of all
polynomials, discarding those combinations where many
polynomials have large degree. The motivation is that for
multiple excitations the fine structure of the energy distri-
butions among the various excitations becomes less im-
portant than for few excitations. Although the motivation is
related to Monte Carlo sampling of the state space, the
SPSR is deterministic without statistical error. Note further
that, increasing Ng, the SPSR is truly variational for the

ground state.
In Fig. 1, the SPSR is compared to a discrete grid for the

calculation of a spectral function. The discrete grid calcu-
lation is dominated by artifacts introduced by the inescap-
able restriction to a small number of orbitals. It is evident
that the SPSR succeeds: Multiple bosonic excitations for
continuous bath degrees of freedom are accurately repre-
sented with a moderate effort. Note that the SPSR resolves
the jump discontinuity of Að!Þ at the ground state energy
Esh ¼

R
d!Jð!Þ=! and has uniform resolution over the

full energy range.
To put the SPSR to a severe test, we calculate the phase

transition in the sub-Ohmic spin-boson model. A NRG
study [3] of the QPTobtained for s < 1=2 critical behavior
incompatible with a mean-field transition expected from
the quantum-classical mapping to the Ising spin chain with
long-range interactions [2]. Using the QMC method, the
authors recently corrected these findings [5], confirming a
mean-field transition. Apparently, the NRG calculations of
the critical behavior suffered from a subtle error inherent to
the renormalization scheme. In light of this controversy, we
use the SPSR to analyze the QPT independent of previous
calculations.

The QPT is best detected using the relation hbyi þ bii ¼
�2ð�i=!iÞm between the oscillator shift and magnetiza-
tion in the ground state. We therefore consider the
Hamiltonian

~Hð�Þ ¼ Hþ �
X
i

�iðbyi þ biÞ þ 2�Esh�z þ �2Esh; (7)

where the oscillator shift is introduced via the unitary

transformation Uð�Þ ¼ exp½�Pið�i=!iÞðbyi � biÞ�. In a
certain sense Uð�Þ prepares a classical mean-field state,
while the quantum fluctuations are captured by the SPSR.
Of course, the true ground state energy Eð�Þ of Hð�Þ is
independent of �. But the SPSR becomes optimal if the

oscillator shift, and hence the average boson number, is
small. Consequently, the numerical Eð�Þ is minimal at
finite (zero) � if the true ground state has finite (zero)
magnetization (see Fig. 2). From Eð�Þ, calculated, e.g.,
with the Lanczos algorithm, we obtain the critical coupling
�c by simple bisection. By increasing the number of states
in the SPSR, the numerical values converge to the true �c

(lower left panel), which in turn yields the phase diagram
(right panel). In Fig. 3, we show the ground state magne-
tization m and the susceptibility � ¼ lim�!0ð@m=@�Þ. The
critical behavior of the two quantities clearly confirms a

mean-field transition for s < 0:5 with m� ð�� �cÞ1=2
and �� ð�c � �Þ�1 (Fig. 3, lower panel). Note that prob-
ing for finite m or the divergence of � is an alternative to
the above QPT criterion. The obtained values for �c agree
with each other (cf. Figs. 2 and 3 for s ¼ 0:3), but the
above criterion is easier evaluated within the numerics,
while, e.g., � is obtained as a derivative.
The analysis of the QPT demonstrates that the SPSR

carries the unique virtues of ED techniques over to open
quantum systems. Physical properties are found by the
direct calculation of the corresponding observables. No
scaling or extrapolation involving additional assumptions
are required, and no method-specific quantities enter the
discussion. The computational effort is moderate, ranging
from a few minutes to hours on standard PCs for the given
results. Concerning their quality, our phase diagram is in
perfect agreement with the QMC method and, taking the
logarithmic NRG discretization into account, also with the
NRGmethod. Our data for the critical behavior confirm the
QMC data, extrapolated to zero temperature. Here we can
read off the critical behavior directly from the numerical
values.
ED techniques have the overall advantage that, once the

Hamiltonian matrix is given, almost any associated quan-
tity can be obtained with high precision. Since the major
interest is in the dynamics of an open quantum system, we
finally give a single example for the dissipative spin dy-
namics at weak coupling. Efficient time evolution with
Chebyshev techniques [8,9] gives the magnetization as a
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FIG. 2 (color online). Left panels: Ground state energy E as a
function of oscillator shift �; convergence of critical coupling �c

with increasing Hilbert space size Ng, number of bosons Nb.

Right panel: Phase diagram of the sub-Ohmic spin-boson model
for � ¼ 0:1, i.e., �c as a function of s, in comparison to QMC or
NRG data taken from Ref. [5].
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function of time (Fig. 4, left panel). The curves are in
perfect agreement with the results from the time-dependent
NRG method [12] and unitary perturbation theory [13]. A
special feature of our calculation is that it requires no
additional damping and no averaging over different bath
discretizations. This results from the superior resolution

provided by the SPSR even for multiple bosonic excita-
tions. Although we have demonstrated that the SPSR is not
restricted to weak coupling, the time evolution close to the
QPT deserves a careful examination that we postpone to a
future publication. To indicate the potential, as the final
example, we show the decay of h�xðtÞi for � ¼ 0. For a
finite number of polynomials the numerics exactly repro-
duces the analytical result but only up to a finite time. With
more polynomials, that time can be easily made very large
(Fig. 4, right panel).
In conclusion, we introduced the SPSR as a novel ap-

proach to static and dynamic properties of open quantum
systems. The SPSR involves a highly accurate representa-
tion of continuous bath degrees of freedom, which is based
on the sparse grid concept applied to polynomial expan-
sions of wave functions. It avoids the discretization arti-
facts that previously prevented the application of powerful
ED techniques in the presence of a bath. We demonstrated
the strength of the SPSR for the QPT in the sub-Ohmic
spin-boson model, where we confirm the quantum-to-
classical mapping for s < 1=2 and for the dissipative spin
dynamics. Despite its current early state of development,
we believe to have presented the SPSR as a serious alter-
native to more established methods. An important issue for
future work is the extension to fermionic baths, which is
possible using antisymmetrized wave functions in step (i)
of our construction. The effectiveness of SPSR in that case
has yet to be assessed.
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FIG. 4 (color online). Left panel: Magnetization mðtÞ ¼
hc ðtÞj�zjc ðtÞi for � ¼ 0:1, s ¼ 1, and � ¼ 0:05 (with Ng ¼
12, Nb ¼ 6). For t < 0 the system is prepared as a spin-up state
with a relaxed bosonic bath. The dashed curve shows the result
from a discrete grid (Np ¼ 25). Right panel: Decay of h�xðtÞi for
� ¼ 0, s ¼ 1, and � ¼ 0:5. For t < 0 the system is prepared
as a spin singlet in the bosonic vacuum. We calculate �xðtÞ in
the Heisenberg picture using a polynomial representation of
operators. Already with �N ¼ 255 polynomials (correspond-
ing to Ng ¼ 8) the numerical and analytical results match up

to t ¼ 1000.
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FIG. 3 (color online). Upper left panel: Susceptibility � and
magnetization m as a function of �, for s ¼ 0:3 and � ¼ 0:1.
Upper right panel: Magnetization m as a function of external
field �, still for s ¼ 0:3 and � ¼ 0:1. The dashed straight lines
indicate the slope of m for � ! 0, which determines �. Lower
panel: Critical behavior of � and m close to the phase transition,
for � ¼ 0:1 and s < 1=2. The curves for � are multiplied with
the indicated factors for better visibility. The straight lines
indicate the critical behavior for ~� ¼ ð�� �cÞ=�c ! 0. The
solid curves on the right show a fit to the ansatz m / ~��½1þ
Oð~�Þ�, which results in the critical exponent � ¼ 1=2 within
numerical accuracy.
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