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Although measurement and unitary processes can accomplish any quantum evolution in principle,

thinking in terms of dissipation and damping can be powerful. We propose a modification of Grover’s

algorithm in which the idea of damping plays a natural role. Remarkably, we find that there is a critical

damping value that divides between the quantum Oð ffiffiffiffi
N

p Þ and classical OðNÞ search regimes. In addition,

by allowing the damping to vary in a fashion we describe, one obtains a fixed-point quantum search

algorithm in which ignorance of the number of targets increases the number of oracle queries only by a

factor of 1.5.
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Dissipation has generally been regarded as a destructive
foe in the arena of quantum mechanics, ruining quantum
effects and greatly complicating theory. This is particularly
true in the case of quantum information science, which
depends on maintaining delicate quantum superpositions
and entanglement. On the other hand, dissipation has many
productive uses in the classical regime, from automobile
shocks to running. One therefore wonders whether dissi-
pation might be employed constructively in the quantum
information context. The possibility of beneficial dissipa-
tion has been considered in simulation of dissipative quan-
tum systems [1], creation of entangled states [2], gener-
ation of a computationally significant ground state [3],
quantum walks [4], the production of a geometric phase
[5], and quantum control theory [6]. So, it is reasonable to
ask to whether dissipation might be deliberately incorpo-
rated into a quantum algorithm to improve the algorithm
[7]; to our knowledge this has not been attempted.

We propose here a natural application of dissipation in
the quantum search algorithm. This algorithm, due to
Grover [8], is a mainstay of quantum information science.
Given an unsorted database of N items of which M are
target items, the quantum search locates one of the target

items with Oð ffiffiffiffiffiffiffiffiffiffiffi
N=M

p Þ queries of an oracle. A classical
search would require OðN=MÞ queries. A well-known
vulnerability of the quantum search is the need for prior
knowledge of the value ofM [9,10]. In the absence of such
knowledge, the quantum search is not robust, producing
results that oscillate between target and nontarget items. In
this Letter, we show that introducing dissipation into the
search algorithm can damp out these oscillations.
Strikingly, we find that a critical damping value emerges
from the theory that divides between the quantum regime

[low dissipation, Oð ffiffiffiffiffiffiffiffiffiffiffi
N=M

p Þ queries] and the classical re-
gime [high dissipation, OðN=MÞ queries].

Although recently other fixed-point quantum searches
have been developed [11–13], they are not designed to

preserve the signature Oð ffiffiffiffiffiffiffiffiffiffiffi
N=M

p Þ behavior of the quantum
search. When the damping is chosen appropriately, the

dissipative approach maintains the Oð ffiffiffiffiffiffiffiffiffiffiffi
N=M

p Þ quantum
behavior. Furthermore, when the damping is allowed to
vary in a manner we describe, ignorance of M costs only a
factor of 1.5 in the number of oracle calls, which is a very
low overhead compared to other ways of handling igno-
rance of M. Overall, our results convincingly demonstrate
the productive use of dissipation in quantum algorithms
and provide an example where the appropriate amount of
dissipation emerges explicitly from the theory.
We briefly review Grover’s quantum search [14]. Given

an unsorted database of N items, one is charged with the
task of finding any one of M target items dispersed
throughout the database. The tool to probe the database
is an oracle that indicates whether a given item is a target or
not. The algorithm begins by placing the state jc i of the
system into an equal superposition of all database statesP

s¼1;...;Njs > =
ffiffiffiffi
N

p ¼ cos�=2j�i þ sin�=2j�i. Here, we

have defined j�i to be an equal superposition of all N �
M nontarget states, j�i to be an equal superposition of all

M target states, and sin�=2 ¼ ffiffiffiffiffiffiffiffiffiffiffi
M=N

p
. It is convenient to

define Pauli operators in the two-dimensional Hilbert space
of j�i and j�i by X ¼ j�ih�j þ j�ih�j, Y ¼ ij�ih�j �
ij�ih�j, and Z ¼ j�ih�j � j�ih�j. In terms of these op-
erators, the oracle is just Z. Grover developed a series of
gates, consisting of one call to the oracle Z followed by one
‘‘inversion about the mean’’ E, that produces the rotation
G ¼ EZ ¼ expð�i�YÞ. After R applications of G, the
system has rotated to cosð2Rþ 1Þ�=2j�i þ sinð2Rþ
1Þ�=2j�i. If � is not too big (M � N), and one chooses

R to be near RðMÞ � darccosð ffiffiffiffiffiffiffiffiffiffiffi
M=N

p Þ=�e, then the final
state will be close to the target j�i. Clearly, if one is
ignorant of M and keeps applying G past R� RðMÞ, the
system will rotate past j�i.
In terms of the system density matrix, the evolution �0 ¼

G�Gy implies

Trð�0XÞ
Trð�0ZÞ
Trð�0Þ

2
64

3
75¼

cos2� sin2� 0
�sin2� cos2� 0

0 0 1

2
64

3
75

Trð�XÞ
Trð�ZÞ
Trð�Þ

2
64

3
75; (1)
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where the initial density matrix � ¼ jc ihc j satisfies
½Trð�XÞTrð�ZÞTrð�Þ�T ¼ ½sin� cos�1�T .

So far, we have simply reviewed Grover’s algorithm,
pointing out how it assumes prior knowledge of the number
of targetsM. Suppose that we do not knowM. How can we
find a target reliably? We propose introducing damping to
slow the rotation in the j�i, j�i plane as the system
approaches the target state.

We append an external spin to the system, taking jc i to
jc i � j #i. Let the external spin Pauli operators be Sx, Sy,

Sz. This external spin will serve to indicate the proximity of
the system to the target state. We replace the Grover
rotation G with

U ¼
�
G
1� Sz

2
þ 1þ Sz

2

��
e�i�Sy

1� Z

2
þ 1þ Z

2

�
: (2)

First, [e�i�Syð1� ZÞ=2þ ð1þ ZÞ=2] calls the oracle and
flips the external spin if jc i has reached the target state

(Z ¼ �1). Second, [Gð1� SzÞ=2þ ð1þ SzÞ=2] applies a
Grover rotation only if the external spin has not flipped
(Sz ¼ �1). Thus, the external spin stifles the Grover rota-
tion as the target is approached, effectively damping the
system. Although it appears at first that U requires 2
controlled oracle calls, in fact it can be written using one
controlled oracle call as

U¼
�
E
1�Sz
2

þ1þSz
2

�
ei�Sy=2

�
Z
1�Sz
2

þ1þSz
2

�
e�i�Sy=2:

Assume we program a computer to follow application of
U with measurement of the external spin and to repeat
these two steps until the external spin has flipped. It begins
to iterate. As long as we do not look at the computer’s
measurement result, from our standpoint the density matrix
of the system will have the form ð1� Tr�Þj�ih�j � j "i�
h"j þ � � j#ih#j. Each iteration produces the following ef-
fect on �:

Trð�0XÞ
Trð�0ZÞ
Trð�0Þ

2
64

3
75 ¼

cos2� cos� sin2� 1þcos2�
2 sin2� 1�cos2�

2

� sin2� cos� cos2� 1þcos2�
2 cos2� 1�cos2�

2

0 1�cos2�
2

1þcos2�
2

2
664

3
775

Trð�XÞ
Trð�ZÞ
Trð�Þ

2
64

3
75: (3)

Note that, since there is some probability at each iteration
that the external spin will flip, Trð�Þ can decrease.

The value of� determines the amount of damping of the
iteration. When � ¼ 0, there is no damping, and we re-
cover Grover’s quantum search. When � ¼ �=2, the
damping is strongest—the external spin essentially acts
as a pointer for a full measurement of Z, the system under-
goes collapse at each oracle call, and the search is nearly
classical. This is the limit discussed in [12,13]. To choose
the optimal value of � for our purposes, we consider the
eigenvalues of the matrix in (3). As Fig. 1 shows, for small
�, when U is nearly G ¼ expð�i�YÞ and (3) is nearly (1),
there are two complex conjugate eigenvalues� expð�i2�Þ
associated with the rotation and one eigenvalue �1 that
keeps Trð�Þ nearly constant. When � is large, there are
three real eigenvalues. In the extreme case � ¼ �=2 (not
shown in Fig. 1), two eigenvalues are 0 and one equals
cos2�. The eigenvalue associated with Trð�XÞ is 0 since
the measurement destroys the coherence. The eigenvalue
associated with Trð�ð1� ZÞ=2Þ is 0 since � is associated
with the nontarget part of the system for which Z ¼ 1. The
remaining eigenvalue is cos2� because a projection to the
nontarget state Trð�ð1þ ZÞ=2Þ followed by a Grover ro-
tation through � returns a nontarget state with probability
cos2�.

Remarkably, there is a critical damping defined by
cos� ¼ ð1� sin�Þ=ð1þ sin�Þ at which all three eigenval-
ues are cos�. At this critical damping, all three compo-
nents Trð�XÞ, Trð�ZÞ, and Trð�Þ appearing in the map (3)
tend to be suppressed since all the eigenvalues have mag-
nitude under 1. Thus, 1� Trð�Þ, the probability that the

target state has been found and the external spin has
flipped, tends to increase. Figure 2 exhibits the special
character of the critical damping value. It depicts the
average number of oracle calls to find the target as a
function of N and � in the case M ¼ 1. As the damping
increases, the Grover rotation shrinks, so the number of
oracle queries tends to increase. For small damping, the
average number of oracle queries to find the target has the

quantum behavior Oð ffiffiffiffi
N

p Þ, while for large damping, the
number of queries goes like the classical expectationOðNÞ.
However, for the critical value of the damping, there is a
distinct valley that separates these two regimes. (The num-
ber of oracle calls on the z axis of Fig. 2 is computed
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FIG. 1 (color online). Real and imaginary parts of the 3
eigenvalues of the matrix (3) as a function of the damping �
near the critical damping. Since the qualitative appearance of
graph is independent of M for M � N, we have avoided putting
numerical values on the � axis specific to a particular M. The

critical damping occurs at cos� ¼ ð1� sin�Þ=ð1þ sin�Þ ¼
ðN � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðN �MÞp Þ=ðN þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðN �MÞp Þ.
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assuming the following reasonable strategy. Knowing N
and �, one plans to execute R calls to U. If the external
spin flips before the R calls are complete, a target has been
found with certainty and no more calls are needed.
Otherwise, the R calls to U are followed with one query
to the oracle to determine if a target has been found. If not,
one starts the procedure over. By fixing a judicious choice
of R, one minimizes the expected number of oracle queries.
This minimum is plotted on the z axis in Fig. 2.)

Having pointed out the existance of a critical damping
value and noted its special character, we now consider how
the damping can be used in the case of unknown M. The
qualitative appearance of Fig. 1 is maintained for general
M � N, but the value of the critical damping depends
upon M through �. In the absence of knowledge of M,
suppose we assume the worst-case scenario of fewest
targets, M ¼ 1, in which the damping cos�¼ ð1� sin�Þ=
ð1þ sin�Þ ¼ ðN� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðN�MÞp Þ=ðNþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðN�MÞp Þ¼

ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
N� 1

p � 1Þ2=ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
N� 1

p þ 1Þ2 is weakest. Figure 3 shows
the progress of the algorithm given this choice of �, for
N ¼ 10 000 with M ¼ 1 and with M ¼ 40. The effect of
the dissipation is evident; the oscillations into and out of
the target state are effectively damped even forM substan-
tially greater than 1. The value of Trð�ZÞ tends to zero, and

with high probability the external spin flips. Since the
external spin signals success, it is not necessary to know
M to run the search effectively.

Although the choice cos�¼ð ffiffiffiffiffiffiffiffiffiffiffiffi
N�1

p �1Þ2=ð ffiffiffiffiffiffiffiffiffiffiffiffi
N�1

p þ
1Þ2 is effective for a broad range of M values near M ¼ 1,
it is not effective when the unknown value ofM happens to
be very large, on the order of N=2. For such large values of
M, the angle � is much greater than this choice of �, and
the system approaches the target state long before the
external spin flips to indicate success. To adapt our algo-
rithm so that the spin can flip early when appropriate, we
allow � to change from iteration to iteration. In the first
application of U, there is large damping � ¼ �=2 in case
M is large. If the external spin has not flipped after this
iteration of U, this is taken as evidence that M must be
somewhat smaller, so the damping is decreased. For con-
creteness, for iteration n > 1, we set cos�n ¼ ð1�
sinð�=2nÞÞ=ð1þ sinð�=2nÞÞ, which should be somewhat
near the critical damping for the M satisfying RðMÞ � n.
Although this choice of�n has not been optimized, we find
that it yields good behavior.
The results are shown in Fig. 4, which compares the

average number of iterations before the external spin flips
to the average number of iterations of the undamped
Grover’s algorithm assuming prior knowledge of M. [The
average number of iterations of the undamped Grover’s
algorithm is determined as follows. First, one computes
pðRÞ, the probability of finding a target after R calls to the
oracle given N and M. One then minimizes over R the av-
erage number of iterations ðRþ 1Þ=pðRÞ ¼ ðRþ 1ÞpðRÞ þ
2ðRþ 1ÞpðRÞð1�pðRÞÞþ 3ðRþ 1ÞpðRÞð1�pðRÞÞ2 þ . . .
assuming that one performs a verification call to the oracle
after the R iterations and then repeats the whole procedure
if the verification turns out negative.] In the worst case
shown, ignorance of M leads to an extra factor of roughly
1.5 oracle calls, although occasionally damping can ac-
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FIG. 3 (color online). Damping of oscillations of Trð�ZÞ. They
approach 0 rather than �1 since � is only the part of the density
matrix for which the external spin has not flipped.
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FIG. 4. Average number of calls to oracle for damped search
with varying damping cos�n ¼ ð1� sinð�=2nÞÞ=ð1þ
sinð�=2nÞÞ as a function of M. We take N ¼ 10 000 and assume
ignorance ofM. For eachM, the damped search result is divided
by the average number of calls to the oracle for the undamped
quantum search assuming that M is known. Note that ignorance
of M costs at most a factor of 1.5 in oracle calls.
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FIG. 2 (color online). Average number of oracle calls to find
the target for M ¼ 1 as a function of N and �. Note the linear
dependence on N for large �, the

ffiffiffiffi
N

p
dependence for small �,

and the valley separating these two regions at the critical
damping. (For any N, � ¼ 0 is the global minimum.)
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tually decrease the number of oracle calls. This damping
method of coping with ignorance of M compares very
favorably with other methods such as successively apply-
ing 2n Grover iterations and measuring, which behaves
quite erratically as a function of M sometimes costing an
extra factor of 30 or more oracle calls, or quantum counting
[9], which yields the value ofM but at a factor far in excess
of 1.5 if M is determined with reasonable accuracy.

So far, the damping has been effected ‘‘artificially’’
using a single ancilla spin that is subjected to unitary
evolution with the system and then measured. This could
be the best way to proceed in an actual quantum computer,
but it is also possible to produce the damping in a more
traditional fashion by coupling the system to a bath. To
show this, we first append a flag qubit to the system to
signal when the target has been reached, taking jc i to
jc i � j0i. The flag qubit operators are denoted �x, �y,

and �z. Next, we introduce a low-temperature bath, mod-
eled as a collection of spins with operators fSx;i; Sy;i; Sz;ig.
We can achieve the same results as (2) by revising it to

U ¼
�
G
1� �z

2
þ 1þ �z

2

�Y
i

�
�x

1þ Sz;i
2

þ 1� Sz;i
2

�

�
�
ðe�i�Sy;i � 1Þ 1� Z

2

1� �z

2
þ 1

�
: (4)

The similarity to (2) is evident, but there is an extra
operator [�xð1þ Sz;iÞ=2þ ð1� Sz;iÞ=2] that flips the

flag qubit if the bath spin has flipped. We can write (4)

asU ¼ expf�i�Yð1 � �zÞ=2gQi½�x
1þSz;i

2 þ 1�Sz;i
2 � �

expf�i�Sy;ið1 � ZÞð1 � �zÞ=4g ¼ expf�i�Yð1 �
�zÞ= 2g

Q
i expf��ð1 � ZÞ=2ð�þSþ;i � ��S�;iÞg �

½�x
1þSz;i

2 þ 1�Sz;i
2 �, where �� ¼ ð�x � i�yÞ=2. Assum-

ing that the bath is cold so that Sz;i ¼ �1 initially, the

last factor can be removed. Now, one can think of Grover’s
algorithm as evolution under a Hamiltonian [15], and since
the Grover rotation has the formG ¼ expð�i�YÞ it follows
that H ¼ Y. To add damping to the Hamiltonian, we are
motivated by the form of U to write H¼Yð1��zÞ=2�
ið�=�Þð1�ZÞ=2ð�þ

P
iSþ;i���

P
iS�;iÞþHbath. Assume

thatHbath allows us to make a Born-Markov approximation
and write a Lindbladt equation [16]. The dynamics of the
portion � of the system density matrix for which the flag
qubit has not flipped are _� ¼ �i½Y; �� � Cð1� ZÞ�=2�
C�ð1� ZÞ=2. Here, C depends on �=� and on spin corre-
lation functions of the bath. This equation leads to dynam-
ics analogous to those resulting from (2).

In summary, we have introduced damping into Grover’s
search to mitigate over-rotation past the target states when
the number of target states is unknown. A critical damping
value has emerged that divides between the classical and

quantum regimes. Tuning the damping appropriately per-
mits quantum search without knowledge of M with only a
factor of 1.5 overhead. We have presented one promising
application of dissipation in quantum algorithms, but
others can be identified. Dissipation-enhanced algorithms
is an exciting avenue for further study along with other
constructive uses of dissipation [1–6].
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