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We investigate electron-positron pair production from vacuum for short laser pulses with a subcycle

structure, in the nonperturbative regime (Schwinger pair production). We use the nonequilibrium quantum

kinetic approach and show that the momentum spectrum of the created electron-positron pairs is

extremely sensitive to the subcycle dynamics—depending on the laser frequency !, the pulse length �,

and the carrier phase �—and shows several distinctive new signatures. This observation could not only

help in the design of laser pulses to optimize the experimental signature of Schwinger pair production but

also ultimately lead to new probes of light pulses at extremely short time scales.
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Electron-positron pair production due to the instability
of the quantum electrodynamics (QED) vacuum in an
external electric field is a remarkable nonperturbative pre-
diction of QED [1–3] that has not yet been directly ob-
served. Significant recent advances in laser technology
have raised hopes that the required critical field strength
of Ecr � 1016 V=cm may soon be within experimental
reach [4–6], either in optical high-intensity laser facilities
such as Vulcan or ELI [7] or in x-ray free electron laser
(XFEL) facilities [8]. Observation of this elusive phenome-
non in the nonperturbative domain would complement the
perturbative multiphoton pair production seen at Stanford
Linear Accelerator Center E144 using nonlinear Compton
scattering [9]. Moreover, it would represent a significant
advance in our understanding of nonperturbative phe-
nomena in quantum field theory, with potentially important
lessons for related phenomena such as Unruh and Hawking
radiation. The Schwinger mechanism has also been used to
study various nonperturbative phenomena: e.g., string
breaking in the strong interactions [10], pair production
in supercritical fields [11], neutrino production in a fermi-
onic density gradient [12], and saturation in heavy-ion
collisions [13]. Since the basic physics is quantum tunnel-
ing, the effect is exponentially weak, and so it is important
to search for distinctive signs that might facilitate its
detection. Here we consider a realistic laser pulse with
subcycle structure and find distinctive new signatures in
the momentum distribution of the produced pairs. We also
explain these signatures by relating the nonequilibrium
quantum kinetic approach [14–19] to the quantum-
mechanical scattering description [20–22].

The original estimates [1–3] assumed a constant and
uniform external electric field, but realistic ultrastrong
fields are realized in short pulse, focused lasers. We con-
centrate here on the time dependence of the electromag-
netic field and neglect spatial variations, assuming that the

spatial focusing scale is much larger than the Compton
wavelength. This approximates the experimental situation
of two counterpropagating short laser pulses, generating a
standing-wave electric field which is approximately spa-
tially homogeneous in the interaction region, such that
~EðtÞ ¼ ð0; 0; EðtÞÞ, with (see Fig. 1)

EðtÞ ¼ E0 cosð!tþ�Þ exp
�
� t2

2�2

�
: (1)

Here ! is the laser frequency, � defines the total pulse
length, and � is the ‘‘carrier phase’’ (carrier-envelope
absolute phase). We are motivated to investigate the
carrier-phase dependence of the Schwinger mechanism
by the sensitive carrier-phase dependence of strong-field
ionization experiments in atomic, molecular, and optical
physics [23]. It is convenient to introduce the parameter
� ¼ !� as a measure of the number of oscillation cycles
within the Gaussian envelope pulse. This type of electro-
magnetic field configuration can be represented by a time-
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FIG. 1. Shape of the electric field Eq. (1), for carrier phase
� ¼ 0, when passing from � ¼ 3 (dotted line) to � ¼ 4 (dashed
line) to � ¼ 5 (solid line). The pure Gaussian field (dashed-
dotted line) is given as a reference.
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dependent vector potential ~AðtÞ ¼ ð0; 0; AðtÞÞ:
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Since Schwinger pair production is a time-dependent non-
equilibrium process, quantum kinetic theory provides an
appropriate framework [17,19,24–30]. (Below, we relate
this to the widely used WKB approach.) Within the quan-
tum kinetic approach, the key quantity is the single-particle

momentum distribution function fð ~k; tÞ, which satisfies a
non-Markovian quantum Vlasov equation including a
source term for electron-positron pair production. We

stress that fð ~k; tÞ is physically meaningful as the distribu-
tion function of real particles only at asymptotic times t !
�1, when the electric field vanishes. As demonstrated in
Ref. [24], the field-current feedback due to Maxwell’s
equation can be neglected in the subcritical field strength
regime E0 & 0:1Ecr. Thus, we need to solve just one
integro-differential equation:

dfð ~k; tÞ
dt

¼ 1

2

eEðtÞ�?
!2ð ~k; tÞ

Z t

�1
dt0

eEðt0Þ�?
!2ð ~k; t0Þ ½1� 2fð ~k; t0Þ�

� cos

�
2
Z t

t0
d�!ð ~k; �Þ

�
: (3)

Here e is the electric charge; ~k ¼ ð ~k?; kkÞ is the canonical
three-momentum, the kinetic momentum along the field is

defined as pkðtÞ ¼ kk � eAðtÞ, �2? ¼ m2 þ ~k2? is the trans-

verse energy squared, and !2ð ~k; tÞ ¼ �2? þ p2
kðtÞ charac-

terizes the total energy squared. Note that Eq. (3) is valid
for Dirac particles (QED); however, there exists a very
similar equation for scalar particles (sQED) which takes
the statistics into account as well [17–19].

The appearance of, and interplay among, a total of four
scales—electron mass m, applied electric field E0, laser
frequency!, and total pulse length �—makes the electron-
positron pair-production process in such a laser field rather
complicated [31] and suggests that the physics will not
simply depend on the Keldysh parameter � � m!=eE0.
Schwinger pair production in a pulsed electric field Eq. (1),
with zero carrier phase (� ¼ 0), has been studied using
WKB [32]. In the nonperturbative regime � & 1, the mo-
mentum spectrum is

d3P
dk3

� exp

�
��

Ecr

E0

�
1� 1

8
~�2

�
� 1

eE0

½~�2k2k þ ~k2?�
�
;

(4)

with ~�2 ¼ ð1þ 1=�2Þ�2. We will show that several inter-
esting properties of the momentum distribution function
for short pulses with many cycles per pulse are not cap-
tured by WKB.

We numerically integrate the quantum Vlasov equation
(3) to obtain the asymptotic distribution function

fð ~k;1Þ ¼ d3P=dk3, for various values of the laser fre-

quency!, choosing a temporal width � ¼ 2� 10�4 eV�1,
which corresponds to a total pulse length of several times
10�19 s. This lies in the anticipated range of experimental
parameters of future XFELs or may become realizable with
higher harmonics or secondary-beam generation of optical
lasers. We concentrate on the dependence on the longitu-

dinal momentum kk, setting ~k? ¼ 0. For the more realistic

case of additional spatial pulse inhomogeneities, we expect
also nontrivial information encoded in all spatial momen-
tum directions.
The most dramatic new effect is that the momentum

distribution shows distinctive oscillations, with an oscilla-
tion scale set by the laser frequency, as shown in Fig. 2. The

distance between successive peaks in fð ~k;1Þ is given by
!. This oscillatory behavior becomes pronounced when
� * 4, and the amplitude of the oscillations in the distri-
bution function increases further as we increase the number
of cycles within the pulse beyond 4.
To understand the physical origin of these oscillations,

we recall that, for a spatially uniform but time-dependent
electric field, the pair-production process can be viewed as
a one-dimensional quantum-mechanical scattering prob-

lem, with the ‘‘potential’’ given by �!2ð ~k; tÞ [20–22].
The number of produced pairs is related to the reflection
coefficient for this over-the-barrier scattering problem. In
fact, this scattering picture is completely equivalent to the
quantum kinetic approach [33,34], and so we can interpret
these oscillations as being due to resonances in the scat-

tering problem as the shape of the potential �!2ð ~k; tÞ
changes with the momentum ~k. These oscillations are
missed when employing the WKB approximation to the
scattering problem on which Eq. (4) is based but can be
seen clearly in an exact numerical integration of the scat-
tering problem or, as we have shown here, in an exact
numerical integration of the quantum Vlasov equation.
This physical picture explains why the spacing between
the peaks is the laser frequency and also explains the

00.250.50.75 0.25 0.5 0.75
k MeV

1 10 14

3 10 14

5 10 14

FIG. 2. Asymptotic distribution function fð ~k;1Þ for ~k? ¼ 0,
E0 ¼ 0:1Ecr, and � ¼ 0 when passing from � ¼ 3 (dotted line)
to � ¼ 4 (dashed line) to � ¼ 5 (solid line). Note that for � ¼ 3
the canonical momentum value kk ¼ 0 corresponds to a kinetic

momentum pkð1Þ � 75 keV, whereas for � ¼ 5 the value kk ¼
0 is equivalent to pkð1Þ � 0.
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sensitive dependence on the other shape parameters, such
as �.

In fact, there is an even more distinctive dependence on
the carrier phase � upon which the form of the scattering

potential �!2ð ~k; tÞ is extremely sensitive. The carrier-
phase dependence is difficult to discuss in the WKB ap-
proach, because a nonzero carrier phase breaks the EðtÞ ¼
Eð�tÞ symmetry of the pulse shape, which in turn makes
the imaginary time treatment of the WKB scattering prob-
lem significantly more complicated [21]. But in the quan-
tum kinetic approach, the carrier phase causes no
computational problems; it is just another parameter. We
have found that the introduction of the carrier phase makes
the oscillatory behavior in the longitudinal momentum
distribution even more pronounced. This is shown in
Figs. 3 and 4, where the momentum distribution function
is plotted for � ¼ ��=4 and � ¼ ��=2. We see that, for
the same values of the other parameters, the oscillatory
behavior becomes more distinct as the phase offset in-
creases. The most distinctive momentum signature, how-
ever, is found for � ¼ ��=2, when the electric field is
totally antisymmetric. In this case, the asymptotic distri-

bution function fð ~k; tÞ vanishes at the minima of the oscil-
lations, as shown in Fig. 4. This feature also has a direct
analogue in the scattering picture: For an antisymmetric
field, the gauge potential Eq. (2) is symmetric, and so is the

scattering potential well �!2ð ~k; tÞ. In this case, perfect
transmission is possible for certain resonance momenta,
corresponding to zero reflection and thus zero pair produc-
tion. Also note that the center of the distribution shifts from
pkð1Þ ¼ 0 to a nonzero value again. These carrier-phase

effects provide distinctive signatures, strongly suggesting a
new experimental strategy and probe in the search for
Schwinger pair production.

These momentum signatures can also be understood in a
quantum-mechanical double-slit picture, which has first
been developed in the context of above-threshold ioniza-
tion with few-cycle laser pulses [35]: In this picture, the
oscillations are fringes in the momentum spectrum that
result from the interference of temporally separated pair

creation events. The fringes are large for� ¼ ��=2, since
then the field strength has two peaks of equal size (though
opposite sign) which act as two temporally separated slits.
Moving the carrier phase away from � ¼ ��=2 corre-
sponds to gradually opening or closing the slits, resulting in
a varying degree of which-way information and thus a
varying contrast of the interference fringes. A quantitative
consequence of this double-slit picture is that the width of
the envelope of the oscillations in the distribution function
is related to the temporal width of the slits. Thewidth of the
envelope of oscillations thus also becomes a probe of the
subcycle structure of the laser.
To complete the physical picture, we consider the over-

all envelope of the longitudinal momentum distribution,
again for � ¼ 0, averaging over the rapid oscillations.
When there are more than three cycles per pulse (� *
3), the peak of the momentum distribution is located near
pkð1Þ ¼ 0, whereas for � & 3 the peak is shifted to a

nonzero value. Furthermore, the Gaussian width of the
employed WKB approximation Eq. (4), which scales
with

ffiffiffiffiffiffiffiffi
eE0

p
=~�, is obviously somewhat broader than the

true distribution, as is shown in Fig. 5. We can quantify
this discrepancy in the width, by extending the WKB result
beyond the Gaussian approximation inherent in Eq. (4). We
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FIG. 3. Asymptotic distribution function fð ~k;1Þ for ~k? ¼ 0
for � ¼ 5, E0 ¼ 0:1Ecr, and � ¼ ��=4. The center of the
distribution is shifted to pkð1Þ � 102 keV.
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FIG. 4. Asymptotic distribution function fð ~k;1Þ for ~k? ¼ 0
for � ¼ 5, E0 ¼ 0:1Ecr, and � ¼ ��=2. The center of the
distribution is shifted to pkð1Þ � 137 keV.
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FIG. 5. Comparison of the asymptotic distribution function

fð ~k;1Þ for ~k? ¼ 0 (oscillating solid line) with the prediction
of Eq. (4) (dotted line) and the improved WKB approximation
based on an expansion of Eq. (5) (dashed line) for � ¼ 5, E0 ¼
0:1Ecr, and � ¼ 0.
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use the results from Ref. [36], where it has been shown that
the WKB instanton action S ~k in scalar QED can also be

applied for spinor QED. Within this approach, d3P=dk3 �
expð�2S ~kÞ, where the instanton action can be defined in

the complex t plane as a contour integral:

2S ~k ¼ i
I
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~k2? þ ½kk � eAðtÞ�2

q
dt; (5)

with the path � around the branch cut. After a change of
variable, from t to T ¼ �AðtÞ=E0, we can expand the
instanton action S ~k in powers of ðm=eE0�Þ2 and

ðkk=eE0�Þ2. The result of this improved WKB expression

to third order is plotted as the dashed line in Fig. 5, while
the Gaussian WKB formula Eq. (4) is shown as a dotted
line. We see that expð�2S ~kÞ fits very well the averaged

envelope of the exact momentum distribution, while the
Gaussian approximation Eq. (4) is significantly broader.
Neither WKB estimate sees the oscillatory structure of the
momentum distribution. Furthermore, the oscillatory be-
havior of the momentum distribution function is found also
for scalar particles in the quantum kinetic framework of
sQED, with the statistics playing a crucial role: The aver-
aged envelope of the momentum distribution functions is
identical; however, at momentum values where QED pre-
dicts a local maximum in the momentum distribution,
sQED predicts a local minimum, and vice versa.

In conclusion, we point out that the momentum distri-
bution signatures described here, as well as their carrier-
phase and oscillation-number dependence, provides for a
new handle on the first detection of Schwinger pair pro-
duction and its quantitative exploration, once laser field
strengths have become sufficiently strong. In practice,
these momentum signatures can distinguish Schwinger-
produced pairs from possible background events, e.g.,
induced by residual-gas effects. As electron spectrometers
used in laser-plasma acceleration experiments can reach a
resolution of better than 1%, the whole spectrum including
the oscillations will be directly accessible.

Analogously to strong-field ionization experiments
[23,35,37,38], these new pair-production signatures may
also serve as sensitive probes of subcycle structure in
ultrashort laser pulses. In addition to the positron yield,
our results suggest a number of new observables such as
the peak position and the width of the momentum distri-
bution function and, most importantly, its potentially os-
cillatory structure. In particular, the characteristics of the
oscillations can provide rather precise information about
the carrier phase and the total pulse length. As the latter
laser characteristics are difficult to control a priori in an

absolute manner, these momentum signatures can serve as
a tomograph of the laser pulse, providing for a unique
means to verify and confirm design goals of future laser
systems at highest intensities.
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