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Suspension of Atoms Using Optical Pulses, and Application to Gravimetry
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Atoms from a 8’Rb condensate are suspended against gravity using repeated reflections from a pulsed
optical standing wave. Up to 100 reflections are observed, yielding suspension times of over 100 ms. The
local gravitational acceleration can be determined from the pulse rate required to achieve suspension.

Further, a gravitationally sensitive atom interferometer was implemented using the suspended atoms. This

technique could potentially provide a precision measurement of gravity without requiring the atoms to fall

a large distance.
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Many experiments using ultracold atoms rely on mag-
netic and/or optical fields for confinement, as these tech-
niques permit atoms to be studied and manipulated over
time scales of many seconds. However, the confinement
forces affect the atomic wave function in a way that is
generally difficult to determine precisely. One might, for
example, propose to measure the local gravitational accel-
eration g by determining the magnetic field gradient re-
quired to keep an atom suspended. Unfortunately, there is
no practical way to measure the applied gradient with
sufficient accuracy to make this method useful. In contrast,
using freely falling atoms, gravity can be measured very
accurately through atom interferometry [1,2]. To obtain
high precision, however, long interaction times are needed.
The resulting vertical space requirement limits the per-
formance achievable in volume-constrained applications
such as inertial navigation.

In this Letter, we demonstrate a method for suspending
atoms that is sufficiently precise to use in gravimetry and
other experiments. The atoms repeatedly interact with an
optical standing wave that provides quantized and well-
characterized momentum kicks. Effectively, the atoms
“bounce” off the light field. A similar idea was recently
proposed by Impens et al. [3]. We also demonstrate a
gravity-sensitive interferometer using the confined atoms.
Although we do not achieve significant precision here,
improvements may permit measurements comparable to
those obtained using falling atoms, but with negligible
drop distance needed.

Atoms have previously been suspended by bouncing
from evanescent waves [4], magnetized surfaces [5], light
sheets [6], and magnetic fields [7]. However, these tech-
niques introduce uncontrolled forces that can spoil many
precision measurements. Furthermore, they have been lim-
ited to only a few bounces, while we observe up to 100. Our
method is related to Bloch oscillations of atoms held in a
static standing-wave potential [8,9], which may also prove
useful for gravimetry [10]. We compare these methods
below. The controlled exchange of multiple photon recoils
is also related to experiments such as [11], in which up to
24hk transfer was achieved in a single pulse. In compari-
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son, we transfer up to 200fk over the course of many
pulses.

The manipulation of atoms by an off-resonant standing-
wave laser was first used in thermal atomic beams [12,13].
Through the ac Stark effect, the laser induces a periodic
potential that acts as a diffraction grating for the atomic
wave function, producing coupling between momentum
components that differ by 2#k for light wave number k.
By controlling the intensity and duration of the applied
pulse, various beam-splitting and reflecting operations can
be achieved. Generally the results are sensitive to the initial
velocity of the atoms, but the low velocity spread in an
ultracold sample allows the operations to be quite precise
[14-16].

We define an order-n reflection as the operation |nhk) —
| —nhk), where |p) denotes a momentum eigenstate. Sus-
pension of atoms starts with mass m atoms held in a con-
ventional trap. The trap is then switched off, allowing the
atoms to fall. After time ¢, = nhk/mg, the atomic momen-
tum will be —n#fik and a reflection operation is applied
using a vertically oriented laser beam, resulting in p —
+nhk. The atoms move ballistically for time 27,, after
which they again have p = —nhk and the reflection can
be repeated. We implemented both order-1 and order-2 re-
flections, with trajectories illustrated in Fig. 1(a) and 1(b),
respectively.

Losses during the reflection operation will limit the
number of bounces that can be achieved. We found that
performance could be improved by using compound se-
quences rather than single pulses. To model the operation,
we numerically solved the Schrodinger equation using the
Bloch expansion

Pz 1) = D c,(1)e@nk+or (1)

for optical potential V,(z, 1) = hB(t) cos(2kz). Here i is
the atomic wave function, 6 accounts for an initial mo-
mentum offset, and B(r) is proportional to the light inten-
sity. This yields a set of equations

.dc,
i

h
dt %(2’7]( + 6)26'” + g(cn—l + cn-H), (2)
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FIG. 1 (color online). Atom trajectories discussed in this
Letter, shown with a common scale as indicated. (a) Bouncing
atoms using order-1 reflections. (b) Bouncing atoms using order-
2 reflections. (c¢) Interferometer produced with a combination of
order-1 and order-2 reflections. Here the colored dashed curves
show the two arms of the interferometer, and there are two
possible output states. (d) More complex interferometer with
large arm spacing. Trajectories (a)—(c) were implemented here.

which were truncated at n = *=6. For 3(t), we considered a
symmetric sequence of three pulses with durations
(T,, T,, T,) and intensities (8, B,, B;). The T,’s and B,’s
were optimized numerically. For the order-1 reflection, we
found (T, T,) = (0.355,0.592)w; !, and (B, B,) =
(1.73,3.45)w,, where w, = hk*/(2m) =~ 2.36 X 10* s7!
is the atomic recoil frequency. For order-2, we obtained
(T, T,) = (0.256, 1.46)w, ! and (B, B,) = (2.28,4.59) w,..
In both cases, the calculated loss was below 2 X 104, but
this did not include losses due to spontaneous emission.
Maintaining an error below 5 X 1073 required §/k < 0.05
for order-1 operations and 0.02 for order-2.

Bouncing was implemented using approximately 10*
87Rb atoms from a Bose-Einstein condensate. The atoms
were prepared in the |F = 2, mp = 2) ground state in a
magnetic trap with oscillation frequencies (w,, ,, ) =
27(7.4,0.8,4.3) Hz, for z vertical. For 8’Rb, the photon
recoil velocity v, = hk/m is 5.88 mm/s and the fall time
t; = v,/g is 0.6 ms. We drop the atoms by turning off the
trap current. The current decay is nonexponential, but
reaches 1/e of its initial value after 160 ws with repeat-
ability better than 1 ws. Because of the finite turn-off time,
the atoms take longer than time #; to reach a momentum of
—hk, and we compensate for this by delaying the first
reflection pulse.

The standing wave was produced by a homebuilt diode
laser with a wavelength of 780.193 nm, 27 GHz blue of the
5812 <> 5P3, laser cooling transition. An acousto-optic
modulator was used to control the optical intensity. The
light was then coupled into a single-mode fiber, which
provided spatial filtering and pointing stability. The output
from the fiber passed vertically through the vacuum cell
and was retroreflected from an external mirror to produce
the standing wave. At this detuning, the expected loss due

to spontaneous emission is 7 X 10™* for order-1 and 2 X
1073 for order-2 reflections. The beam was approximately
Gaussian with a waist of 1 mm.

We investigated suspension by releasing the atoms and
then applying a sequence of reflection operations. The time
before the first pulse and the time between pulses were
varied to maximize the number of atoms remaining. The
final number of atoms and their momentum state was
monitored using time-of-flight absorption imaging with a
resonant probe traveling along the horizontal y axis. The
results for both order-1 and order-2 bouncing are shown in
Fig. 2. In both cases, suspension times exceeding 100 ms
were observed.

We observe a nonexponential decay of the atom number,
with larger losses for the later operations. The form of this
falloff varied from day to day, but the time scale was
consistent. The reason for the decay is not clear, but a
few possibilities can be suggested. For instance, if the pulse
rate is incorrect, then the momentum error /26 will increase
over time, leading to greater loss. Also, the condensate
expands considerably during the experiment, so if the
standing-wave intensity is nonuniform, spatially dependent
errors in 8 will develop. We plan to investigate these issues
further, since our model suggests thousands of bounces
should be possible.

This experiment already provides a measurement of
gravity, since the optimum pulse rate depends on the value
of g [3]. For the data shown, we used t; = 603.0 = 0.5 us,
where the uncertainty is determined as the variation needed
to reduce the atom number by roughly a factor of 2. This
gives g = (hk)/(mt;) = 9.759 = 0.008 m/s?, different
from the expected value of 9.81 m/s?. Since the atoms
are in a state with nonzero magnetic moment, the discrep-
ancy can be explained by a modest ambient magnetic field
gradient. Measurements outside the vacuum cell indicated
a vertical gradient of B’ =7 £2 G/m. We were able to
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FIG. 2. Suspension of atoms using (a) order-1 and (b) order-2
reflection operations. Data points indicated the number of atoms
remaining after the indicated number of reflections. In both
cases, the horizontal scale corresponds to a total time of 125 ms.
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determine the gradient more precisely by modifying the
trap turn-off procedure to be nonadiabatic for the atomic
spins, so that multiple Zeeman states were populated. As
the atoms bounced, the magnetic force caused the states to
separate, as in a Stern-Gerlach experiment. The separation
was observed in the absorption images, and from it we
obtain a value of B’ = 8.6 = 0.1 G/m. This gives a cor-
rected value for g of 9.814 + 0.008 m/s?>. We note that
magnetic gradiometry is another potential application for
the suspension technique.

A more precise determination of g can be made by
implementing an atom interferometer using the suspended
atoms. One approach is illustrated in Fig. 1(c). The atoms
are dropped as before, but at time #; when p = —hk, the
beam-splitting operation |—hk) — \/%(I —hk) — i|+hk)) is
applied, using a single optical pulse with 8 = 1.95w, and
duration 0.145w;!. The two resulting wave packets are
then independently suspended using alternating order-1
and order-2 reflections, as shown. ( The order-2 reflection
does not change the momentum of atoms with p = 0.)
Eventually, the packets can be recombined, with a result
that depends on their phase difference. Since one packet is
always above the other, it is clear that the phase difference
depends on g.

We calculate the phase difference between the pack-
ets using the quantum-mechanical solution for a falling
plane wave state. A packet initially described by a wave
function ¢(z) = exp(igz) will evolve to (z 1) =
expli(lg — yt)z]expli®(q, 1)] for y = mg/h and

h 1
O(q, 1) = %Gﬁt — gy + 3 72t3)- 3)

This can be verified by substitution into Schrodinger’s
equation. The phase difference developed during one cycle
of the interferometer can therefore be expressed as

O=0k+8271)—0O(—k+ 6,1
- ®(3k - YT + 5’ T) + ¢r2 + d)rl’ (4)

where /16 is the momentum offset at the start of the cycle,
27 is the cycle duration, and ¢,,, is the phase difference
imparted by an order-n reflection. After the cycle, the mo-
mentum offset is 6 — 2k + 2y7. Evaluation of (4) yields

O R TRE e

Thus, after N cycles, the wave function will be
i = |n(k + 6y)) — ie™P|n(—k + 8y)) (6)

for final momentum offset 20 . The beam-splitting opera-
tion is then applied with shifted phase ¢, resulting in a
fraction of atoms f, = sin’[(N® + ¢,)/2] with momen-
tum +#hk. We vary ¢, by changing the frequency of the
standing-wave laser before the final beam splitter, as in
[17]. By plotting f, vs ¢, the phase N® is determined for
various numbers of cycles, as seen in Fig. 3. We find ® =

2mj — 0.035 = 0.003 for integer j. The value of g obtained
from the bouncing experiments fixes j = —9.

The accuracy of the data is limited by deviations from
the expected linear dependence on N, as seen in the resid-
uals in Fig. 3. We attribute the structure to residual oscil-
lations in the magnetic field after turning off the trap. The
signal corresponds to a decaying gradient with initial am-
plitude 10 G/m, about 0.3% of the original trap gradient.
Eliminating this field might prove difficult, but its effects
could be reduced by transferring the atoms to a magneti-
cally insensitive state.

To obtain a value for g, the reflection phases ¢, and ¢,
must be determined from the model. To do so accurately,
the effect of gravity during the pulse should be included.
This is accomplished by working in the interaction picture
with respect to the gravitational interaction mgz. The
calculation proceeds as in Eq. (2), but using the interaction
Hamiltonian

Hy(1) = UL )V, (z, ) Uy 1), (7)

where Uy(1)|g) = exp[i®(q, 1)]lg — y1). We reference 1 to
the beginning of the pulse for the initial beam-splitter
operation, to the center of the reflection sequences, and
to the end of the recombination pulse. The cycle time 7 is
defined accordingly. We obtain ¢,; = (1 = 1) X 1072 and
&,» = 0.56 = 0.16. These uncertainties are the dominant
source of error in the experiment. They arise primarily
from a sensitivity of the phase to the intensity of the
standing wave, which is difficult to control precisely. We
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FIG. 3. Results of interferometer experiment. The upper graph
shows the total phase shift observed in the output, in radians. The
insets are sample plots of the fraction f, of atoms with p = hk
exiting the interferometer. The cases of one cycle and 40 cycles
are shown. The duration of one cycle is 2.4 ms. The residuals
plotted in the lower graph are the difference between the mea-
sured phase and the linear fit; the oscillations are attributed to a
transient magnetic field produced when the trap is turned off.
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obtain a value for g of 9.745 + 0.027 m/s?, actually less
precise than that obtained from bouncing. However, if the
reflection phase errors were eliminated, the fractional un-
certainty would be reduced to 5 X 1075,

The sensitivity to the standing-wave intensity comes
from a lack of symmetry between the two arms, since the
lower arm undergoes an order-2 reflection while the upper
arm does not, and gravity acts in the opposite sense for the
order-1 reflection. This asymmetry can be removed if the
|0y — (|0) + |2hk))/+/2 beam-splitting operation is avail-
able. This requires a traveling standing wave, rather than
the static standing wave used up to now [14]. An interfer-
ometer could be implemented by following this beam
splitter with order-2 reflections at intervals of 1, =
2hk/mg. Each packet would undergo the same operations
during a cycle so the reflection phases would largely
cancel. In addition, the average packet separation is twice
as large, leading to a proportionally greater sensitivity to g.
We have implemented an interferometer of this sort, but the
beam splitter was not sufficiently consistent to achieve
clear results. We plan to implement a more reliable splitter
using, for instance, the method of Ref. [11].

A traveling standing wave also permits more complex
interferometer schemes, such as that of Fig. 1(d). This
trajectory starts with the beam splitter described above.
A time f, later, an order-2 reflection is applied, making
p = 0 for the upper packet and p = +2hk for the lower
packet. This is immediately followed by a 7 pulse on the
transition |0) < |+2#k), leaving the upper trajectory mov-
ing upward and the lower trajectory stationary. Another
time t, later, the same operations can be repeated, resulting
in an increasing vertical separation of the packets as
shown. When desired, the operations are reversed, bringing
the packets back together and closing the interferometer in
a symmetric way. Here the spacing between the packets
grows with the total measurement time just as in an inter-
ferometer with free-falling atoms. The fundamental sensi-
tivity would therefore be comparable to that obtained with
falling atoms, but the minimal vertical space required
would be a substantial advantage.

The gravimetry techniques discussed here can be di-
rectly compared to measurements using Bloch oscillations
in an optical lattice, in which the same type of reflections
occur but in a lattice that is continuously present [10]. As a
result, the momentum state of the atoms oscillates at the
Bloch frequency ) = (7g)/v,. By measuring (), a value
for g can be obtained. If the measurement occurs over time
T and is shot-noise limited, then the uncertainty 6() will be
1/(T/IN') for atom number 2N". This gives an uncertainty
8g = (v,/m)(TVN)~'. To compare, in our scheme the
interferometer phase can be measured to an accuracy of

1/~ IN for an uncertainty g = (dg/d®)/ N . From (5),
@ = ONkt? = Tkt = Tkvr.
ag g

This gives g = (g/v,k)(TVN)~!, better than the Bloch
method by a factor of 9 for the case of ¥’Rb.

In conclusion, we have demonstrated the ability to sus-
pend otherwise unconfined atoms in gravity for over
100 ms, using repeated reflections from a standing-wave
laser beam. We note that free atoms would fall a distance of
5 cm in this time. To achieve this, we developed high-
precision reflection operations, for which our model pre-
dicts that a factor of 10 greater suspension time should be
possible. We further demonstrated a gravitationally sensi-
tive atom interferometer using the suspended atoms. With
some improvements, this technique might be able to
achieve gravimetric precision similar to that of free-falling
atom interferometers, but with a much reduced space
requirement.
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