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The superfluid transition of a three-dimensional gas of hard-sphere bosons in a disordered medium is

studied using quantum Monte Carlo methods. Simulations are performed in continuous space both in the

canonical and in the grand-canonical ensemble. At fixed density we calculate the shift of the transition

temperature as a function of the disorder strength, while at fixed temperature we determine both the

critical chemical potential and the critical density separating normal and superfluid phases. In the regime

of strong disorder the normal phase extends up to large values of the degeneracy parameter, and the critical

chemical potential exhibits a linear dependence in the intensity of the random potential. The role of

interactions and disorder correlations is also discussed.
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The interplay among superfluidity, interactions, and dis-
order in quantum degenerate Bose systems (the so-called
dirty boson problem) is a central topic in condensed matter
physics, many aspects of which are still unsolved and
under scrutiny. Since the seminal work by Fisher et al.
[1], the general understanding is that interactions are es-
sential to stabilize the system and that superfluidity is lost
for strong enough disorder, leading to a normal phase
which at low temperatures is identified with the Bose glass
phase. However, a quantitative description in terms of the
relevant parameters of the random potential and other
matters, such as the critical behavior and the role of di-
mensionality, are still open issues.

On the experimental side, a large body of work was
devoted to 4He adsorbed in porous media, such as Vycor
glass and aerogels [2,3]. These studies investigated the
behavior of the heat capacity and of the superfluid response
[2], as well as the dynamic structure factor [3] as a function
of temperature and filling. However, no clear evidence was
observed of a compressible Bose glass phase. More re-
cently, the dirty boson problem has been addressed using
ultracold atoms, which offer unprecedented control and
tunability of the disorder parameters and of the interaction
strength. Interaction effects were studied in disordered
optical potentials [4], even though the main effort has
been given so far to the suppression of diffusion for non-
interacting particles (Anderson localization) [5].

Many relevant theoretical contributions are based on
quantum Monte Carlo simulations of the Bose-Hubbard
Hamiltonian with disorder [6]. In this lattice model the
physical scenario is more involved than in continuous
space because of the role played by commensurability
and of the existence of the interaction-driven phase tran-
sition to the Mott insulating state. Other theoretical ap-

proaches make use of mean-field approximations [7,8] and
are not reliable in the regime of strong disorder.
In this Letter, we report on a path-integral Monte Carlo

(PIMC) study of an interacting Bose gas in the presence of
correlated disorder produced by 3D optical speckles. This
random potential is relevant for experiments and allows for
an independent tuning of intensity and correlation length.
By increasing the disorder strength, we find a sizable
reduction of the superfluid transition temperature, and the
shift is larger for weaker interactions. We map out the
normal to superfluid phase diagram, both in the chemical
potential vs disorder and in the density vs disorder plane.
For strong disorder and in the presence of small but finite
interactions, the critical chemical potential varies linearly
with the disorder intensity and is essentially independent of
temperature and interaction strength, in agreement with the
existence of a mobility edge separating localized from
extended states. In this regime and for chemical potentials
below the critical value, the equilibrium state is a highly
degenerate normal gas which is expected to correspond to
the Bose glass phase. We consider a system of N identical
particles of mass m subject to the random field Vdis and
interacting with a short-range pairwise potential. The
Hamiltonian is given by

H ¼ XN
i¼1

�
� @

2

2m
r2

i þ VdisðriÞ
�
þX

i<j

Vðjri � rjjÞ: (1)

The interatomic potential is modeled by a hard-sphere
interaction: VðrÞ ¼ þ1 if r < a and zero otherwise,
where the hard-sphere diameter a corresponds to the
s-wave scattering length. The system is in a cubic box of
volume V ¼ L3 with periodic boundary conditions.
Disorder is modeled by an isotropic 3D speckle potential
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defined as follows [9]:

VdisðrÞ ¼ V0

��������
1

V

Z
dk~’ðkÞWðkÞeik�r

��������
2

; (2)

where V0 is a positive constant and ~’ðkÞ ¼ R
dr’ðrÞe�ik�r

is the Fourier transform of the complex field ’ðrÞ, whose
real and imaginary parts are independent random variables
sampled from a Gaussian distribution with zero mean and
unit variance. The function WðkÞ is a low-wave-vector
filter defined as WðkÞ ¼ 1 if k < �� and zero otherwise.
The random potential in Eq. (2) is positive definite, and the
probability distribution of its intensities is given by the

normalized exponential law PðVdisÞ ¼ e�Vdis=V0=V0. If the
volume V is large enough, the disorder Vdis is expected to
be self-averaging, i.e., spatial averages coincide with aver-
ages over different realizations, and one has V0 ¼ hVdisi ¼
1=V

R
drVdisðrÞ. The mean square displacement is also de-

termined by the same energy scale: V0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hV2

disi � hVdisi2
q

.

The correlation length ‘c is defined from the spatial auto-
correlation function �ðr0Þ ¼ hVdisðrÞVdisðrþ r0Þi � hVdisi2
as the length scale for which �ð‘c=2Þ ¼ �ð0Þ=2. We find
the following relation between the correlation length and
the wave-vector cutoff�: ‘c ¼ 1:1=�. The length scale ‘c
is typically�100 times larger than the hard-sphere diame-
ter a, allowing for a wide range of disorder intensities
where interaction effects are well described by the
s-wave scattering length, and the details of the interatomic
potential are irrelevant. The typical box size used in the
simulations ranges from L� 20‘c to L� 50‘c. An indi-
cation of self-averaging of disorder for these values of L is
provided by the inset in Fig. 1, where we show the com-
parison between the autocorrelation function � averaged
over many realizations of the random potential and the one
corresponding to a single realization. The typical shape of

the speckle potential Vdis is also shown in Fig. 1: Typical
wells have size ‘c and depth V0. We notice that standard
experimental realizations of optical speckles are 2D; i.e.,
the speckle pattern lies in the plane perpendicular to the
propagation of the laser beam. We consider instead a 3D
pattern, having the same correlation length in the three
spatial directions.
The energy @

2=m‘2c, associated with the correlation
length ‘c, and V0 provide the two relevant energy scales
for the disorder potential. In particular, if V0 � @

2=m‘2c,
the random potential is classical in nature, with typical
wells that are deep enough to sustain many single-particle
bound states. The opposite regime V0 � @

2=m‘2c corre-
sponds instead to quantum disorder, where typical wells of
size ‘c do not have bound states, and these can be sup-
ported only by rare wells of size much larger than ‘c or
with depth much larger than V0.
The outcomes of PIMC simulations consist of unbiased

estimates of thermal averages of physical quantities, using
the many-particle configurations R ¼ ðr1; . . . ; rNÞ
sampled from a probability distribution proportional to

the density matrix �ðR;R; TÞ ¼ hRje�H=kBTjRi at the
temperature T. In the present study, we are interested in
the superfluid density �s, obtained from the winding num-
ber estimator [10], and in the one-body density matrix
(OBDM) n1ðrÞ, whose long-range behavior defines the
condensate density n0 ¼ limr!1n1ðrÞ. Our simulations
are based on the worm algorithm [11], which allows for
an efficient sampling of permutation cycles, and on the
pair-product decomposition, which is well suited for stud-
ies of dilute systems [12]. We perform calculations both in
the canonical (at fixed density n) and in the grand-
canonical ensemble (at fixed chemical potential �) [11].
We are now in a position to discuss our results. First we

discuss the simulations carried out at fixed density. The
scattering length and the disorder correlation length are
also kept fixed, and for the latter we choose the value
n‘3c ¼ 0:24, such that there is typically one particle in
each small sphere of radius ‘c: n4�‘

3
c=3 ’ 1. Results for

the transition temperature as a function of disorder strength
are shown in Fig. 2 for two values of the gas parameter na3.

The transition temperature Tc is expressed in units of T
0
c ¼

ð2�@2=mkBÞ½n=�ð3=2Þ�2=3, the critical temperature of the
noninteracting gas with �ð3=2Þ ’ 2:612. The results in the
absence of disorder are taken from Ref. [12]. At na3 ¼
10�4, there is no appreciable change for V0 & 1 compared
to Tc in clean systems. For larger intensities, we find a
sizable shift that is well described by a linear dependence
in V0. For a given strength V0, the reduction of the tran-
sition temperature is enhanced for smaller values of the gas
parameter, consistently with the instability of the ideal
Bose gas in the presence of disorder [13]. The value of
Tc is extracted from the results of the superfluid fraction
�s=� (� ¼ mn is the total mass density), corresponding to
systems with different particle numberN, using the scaling
ansatz
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FIG. 1 (color online). Typical shape of the speckle potential
Vdis, with averaged value V0 ¼ @

2=m‘2c, shown in the direction
ð0; 0; 1Þ of the simulation box. We also show schematically the
value of the critical chemical potential �c. Inset: Radial depen-
dence (in units of the inverse momentum cutoff �) of the
disorder spatial autocorrelation function �. The solid (black)
line refers to an average over many realizations of the random
field; the (green) symbols correspond to a single realization.
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N1=3�sðt; NÞ=� ¼ fðtN1=3�Þ ¼ fð0Þ þ f0ð0ÞtN1=3� þ � � � :
(3)

Here t ¼ ðT � TcÞ=Tc is the reduced temperature, � is the
critical exponent of the correlation length �ðtÞ � t��, and
fðxÞ is a universal analytic function, which allows for a
linear expansion around x ¼ 0. The validity of the scaling
behavior (3) is presented in the inset in Fig. 2, where the
effect of different realizations of the random potential is

also shown. The quantity Nð1þ�Þ=3n0=n, involving the con-
densate fraction n0=n and the correlation function critical
exponent � ¼ 0:038 of the XY-model universality class, is
also expected to obey a scaling relation of the form (3). For
all reported disorder strengths V0, the extracted value of the
critical exponent � is compatible with the result � ¼ 0:67
corresponding to clean systems [12]. It is worth noting that
the values of Tc, obtained from the scaling law of the
superfluid �s=� and of the condensate fraction n0=n, co-
incide within our statistical uncertainty (see Fig. 2). The
presence of disorder reduces the quantum delocalization of
particles occupying the deepest wells of the potential and,
consequently, their contribution to the superfluid behavior.
Superfluidity takes place when the degeneracy condition is
met for the effectively smaller density of ‘‘delocalized’’
particles, resulting in a suppressed value of Tc. In Ref. [8],
the shift �Tc ¼ Tc � T0

c of the superfluid transition tem-
perature is calculated using a perturbative approach for the
�-correlated disorder h�VdisðrÞ�Vdisðr0Þi ¼ 	�ðr� r0Þ,
where �VdisðrÞ ¼ VdisðrÞ � hVdisi. The Tc shift is found
to be quadratic in 	, implying for our speckle potential that
�Tc=T

0
c ¼ ðm2V2

0‘
3
c=

ffiffiffiffiffiffi
na

p
@
4Þ2=½2ð12 log2Þ3�, where we

used a Gaussian fit to the radial dependence of the auto-
correlation function � and considered the limit ‘c ! 0. We
report this prediction in Fig. 2 (we also add the interaction
contribution not accounted for by Ref. [8], so that in the

clean case an exact result is reproduced). Our data in the
regime of very weak disorder do not have enough precision
to allow for a quantitative comparison and diverge from the
theory before �Tc=T

0
c becomes appreciable. The effect of

disorder on the critical temperature of a hard-sphere gas
was also investigated using PIMC methods in Ref. [14],
where, however, no significant reduction of Tc was re-
ported. For stronger intensities of disorder, the calculation
of Tc becomes increasingly difficult, since the dependence
on the realization gets more important and larger systems
are needed in order to have a satisfactory self-averaging of
the random potential.
In Fig. 3, we report results for the critical chemical

potential �c obtained from calculations carried out in the
grand-canonical ensemble. A small change of� around�c

translates into a drastic change in the long-range behavior
of the OBDM (see inset in Fig. 3): For�<�c, the OBDM
decays to zero and corresponds to a normal phase; for �>
�c, the OBDM reaches a constant value characteristic of
the superfluid state. If interactions are small but finite, we
also find that the value of �c is essentially insensitive to a
change of temperature and of interaction strength. For
weak disorder, this result is accompanied by a very small
critical density (see Fig. 4) and corresponds to a renormal-
ization of�c due to disorder in an extremely dilute gas. For
strong disorder, it is instead consistent with the picture of a
mobility edge, which depends only on the parameters of
the random potential and separates localized single-
particle states from extended ones. In this latter regime
we find a linear dependence of �c as a function of V0, in
agreement with the qualitative T ¼ 0 prediction of
Refs. [15,16] in the case of classical disorder.
Finally, we analyze the dependence of the critical den-

sity nc on the intensity of the random potential. The
calculations are carried out in the canonical ensemble at
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FIG. 3 (color online). Critical chemical potential (shifted by
V0) as a function of the disorder strength for different values of
temperature (in units of @2=m‘2c) and scattering length. The gray
shaded area denotes the superfluid phase. Inset: Spatial depen-
dence of the OBDM for two values of the chemical potential
slightly below and above �c. Here kBT ¼ 0:13@2=m‘2c and
a=‘c ¼ 0:016. Two different system sizes are used to check
the role of finite-size effects.
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FIG. 2 (color online). Superfluid transition temperature as a
function of the disorder strength for two values of the gas
parameter na3. Open and solid symbols refer, respectively, to
Tc determined from the superfluid and from the condensate
fraction. The dashed line is the prediction of Ref. [8] at na3 ¼
10�4 shifted by (Tc � T0

c ) in the absence of disorder.
Inset: Scaling behavior of the superfluid density for different
system sizes and different realizations of disorder.
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fixed temperature and scattering length. The method used
to determine nc is shown in the inset in Fig. 4. For a given
value of V0, one increases the density and calculates the
superfluid �s=� and the condensate fraction n0=n. The
results are then fitted by a power-law dependence �s=��
ðn� ncÞ� and n0=n� ðn� ncÞ�ð1þ�Þ for n > nc, where the
proportionality coefficients are expected to be nonuniver-
sal parameters. In the inset in Fig. 4, we show the results
corresponding to a configuration without disorder (V0 ¼ 0)
and with strong disorder (V0 ¼ 6:4@2=m‘2c). The reported
values are averaged over a few realizations of the random
potential, and their scatter gives an idea of the relevance of
this effect. For the small value of the scattering length used
here, the critical density at V0 ¼ 0 coincides with the

noninteracting result n0c ¼ �ð3=2ÞðmkBT=2�@
2Þ3=2, while

for the large V0 one finds that nc is about a factor of 8
greater than n0c. It is also worth noticing that for strong
disorder one enters a regime where n0=n is significantly
larger than �s=�. More comprehensive results are shown in
Fig. 4, where nc is estimated from the superfluid fraction,
which is less sensitive to finite-size effects. The results
clearly show an increase of the critical density as a function
of V0, from the noninteracting degenerate density n0c up to
values �20 times larger. It is also worth noticing that, for
strong disorder, an increase of the scattering length a is
accompanied by a decrease of nc resulting in a constant
value of the critical chemical potential (see Fig. 3).

In conclusion, we have investigated the superfluid criti-
cal behavior of an interacting Bose gas in a correlated
random medium. In the regime of strong disorder and
low temperatures, we identify a phase where the gas is
both normal and highly degenerate, which should be re-
lated to the Bose glass phase predicted at T ¼ 0. An
important question that will be addressed in future studies

concerns the equation of state and the thermodynamic
properties of this exotic normal phase.
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FIG. 4 (color online). Critical density as a function of the
disorder strength for different values of temperature (in units
of @2=m‘2c) and scattering length. The horizontal arrows indicate
the critical value n0c of the noninteracting gas. Inset: Density
dependence of �s=� [(pink) squares] and n0=n [(blue) circles]
for the values V0 ¼ 0 and V0 ¼ 6:4@2=m‘2c of the disorder
strength. Here kBT ¼ 0:13@2=m‘2c and a=‘c ¼ 0:016. The ver-
tical arrow indicates the corresponding value of the degenerate
density n0c.
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