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We study the relationship of the spectral form factor with quantum as well as classical probabilities to

return. Defining a quantum return probability in phase space as a trace over the propagator of the Wigner

function allows us to identify and resolve manifolds in phase space that contribute to the form factor. They

can be associated with classical invariant manifolds such as periodic orbits, but also to nonclassical struc-

tures such as sets of midpoints between periodic points. In contrast to scars in wave functions, these fea-

tures are not subject to the uncertainty relation and therefore need not show any smearing. They constitute

important exceptions from a continuous convergence in the classical limit of the Wigner towards the

Liouville propagator. We support our theory with numerical results for the quantum cat map and the

harmonically driven quartic oscillator.
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Introduction.—Evidence abounds that the spectrum of
quantum systems bears information on the corresponding
classical dynamics, in particular, on manifolds invariant
under time evolution. The Gutzwiller trace formula [1] and
its numerous ramifications feature specifically the set of
isolated unstable periodic orbits of classically chaotic sys-
tems. The discovery that energy eigenfunctions are typi-
cally ‘‘scarred’’ along such orbits [2] required us to modify
the picture of ergodic eigenstates and allowed us for the
first time to directly visualize the impact of classical in-
variant manifolds on quantum-mechanical distributions
defined on configuration or phase space [3]. The influence
of classical invariant manifolds on time-domain features
has mainly been studied in the spectral form factor. It
inherits its relation to periodic orbits from the underlying
spectral density via the Gutzwiller trace formula. Being
bilinear in the spectral density, it involves pairs of orbits
and their interfering contributions. Only recently, the full
double sum that ensues could be tamed [4], thus providing
an exact semiclassical account of the form factor [5].

A step towards more global and immediate correspon-
dence to the classical dynamics has been made in the
context of the spectral analysis of systems with dynamical
localization [6,7], relating the spectral form factor Kð�Þ
[6,7] directly with the classical probability to return Pcl

retðtÞ.
For chaotic systems, it reads

Kð�Þ � ð2=�Þ�Pcl
retðtH�Þ; (1)

where � ¼ 1 (2) in the presence (absence) of time-reversal
invariance. Based on the diagonal approximation, the ex-
pression is valid for times short compared to the
Heisenberg time tH. A similar relation but without the
prefactor � holds for integrable systems [7] and for chaotic
systems with dissipation [8]. Equation (1) calls for a deeper
understanding beyond its original application and deriva-
tion from the Gutzwiller trace formula, to explore its

potential as an alternative semiclassical route to spectral
analysis.
In this Letter, we study the relation of quantum and

classical return probabilities in phase space with the spec-
tral form factor in the light of recent progress in semiclas-
sical approximations to the Wigner propagator [9,10]. The
interference of orbit pairs is already implicit in quantum
return probabilities: They can be expressed, like their
classical analogues, as traces (not traces squared) over a
corresponding propagator, resulting in very direct
quantum-classical relations on the same footing.
Before tracing, the diagonal propagator of the Wigner

function, through its explicit dependence on phase-space
coordinates, allows us to resolve the manifolds in phase
space behind the contributions to the form factor.
Expressing it semiclassically in terms of orbit pairs, it turns
out that besides the classical invariant manifolds also sets
of midpoints between them contribute. Hence, classical
and quantum return probabilities generally cannot coin-
cide. This implies severe restrictions to the convergence of
the Wigner propagator towards the classical (Liouville)
propagator, at least for the diagonal propagator near such
midpoint manifolds. That these dominant features of the
diagonal Wigner propagator occur in a time-dependent
distribution function suggests calling them ‘‘time-domain
scars.’’ By contrast to scars in eigenfunctions, they are not
affected by the uncertainty relation and therefore allow for
an unlimited resolution of classical structures.
Classical and quantum return probabilities.—In quan-

tum mechanics, a probability to return is generally defined
like an autocorrelation function: Introduce a return ampli-

tude aretðtÞ ¼
R
dfq0hqðtÞjq0i with jqðtÞi ¼ ÛðtÞjq0i, ÛðtÞ

the time-evolution operator, and square,

Pqm
ret ðtÞ ¼ jaretðtÞj2 ¼ jtrÛðtÞj2: (2)

By contrast, a classical return probability in phase space is
constructed as follows: Prepare a localized initial distribu-
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tion �r0ðr; 0Þ ¼ ��ðr� r0Þ, ��ðrÞ a strongly peaked func-

tion of width � and r ¼ ðp;qÞ a vector in 2f-dimensional
phase-space. Propagate it over a time t and overlap it with
the initial distribution. The resulting pcl

retðr0; tÞ ¼R
d2fr�r0ðr; tÞ�r0ðr; 0Þ can be interpreted as a probability

density to return. Here, the time-evolved distribution is
obtained from the Liouville propagator Gclðr00; t; r0; 0Þ as
�r0ðr00; tÞ ¼

R
d2fr0Gclðr00; t; r0; 0Þ�r0ðr0; 0Þ. Tracing over

phase space yields the return probability Pcl
retðtÞ ¼R

d2fr0p
cl
retðr0; tÞ. Taking �r0ðr; 0Þ ¼ �ðr� r0Þ, we have

Pcl
retðtÞ ¼

Z
d2fr0G

clðr0; t; r0; 0Þ: (3)

To avoid divergences, in particular, at t ¼ 0, the phase-
space integration has to be restricted to a finite range�E in
energy, if it is conserved, by introducing some normalized
energy distribution �ðEÞ.

In quantum mechanics, the Wigner function enables

a similar construction. It is defined as Wðr; tÞ ¼R
dfq0e�ip�q0=@hqþ q0=2j�̂ðtÞjq� q0=2i, with �̂ðtÞ, the

density operator. Its propagator is the kernel that
evolves the Wigner function over finite time, Wðr00; tÞ ¼R
d2fr0GWðr00; t; r0; 0ÞWðr0; 0Þ. By analogy, we thus arrive

at a quantum-mechanical quasiprobability density to return
in phase space [11], p

qm
ret ðr0; tÞ ¼ GWðr0; t; r0; 0Þ, and a

return probability

P
qm
ret ðtÞ ¼

Z
d2fr0GWðr0; t; r0; 0Þ: (4)

The integration across the energy shell produces a factor
DH ¼ �E=hdi, the effective dimension of the Hilbert
space H , hdi denoting the mean spectral density.

Equations (2) and (4) are equivalent: If we express
the propagator of the Wigner function in terms of

the Weyl propagator, Uðr; tÞ ¼ R
dfq0e�ip�q0=@hqþ

q0=2jÛðtÞjq� q0=2i, we obtain GWðr00; t; r0; 0Þ ¼R
d2freð�i=@Þðr00�r0Þ^rU�ðr�; tÞUðrþ; tÞ, with r� �

ðr0 þ r00 � rÞ=2. Substituting in Eq. (4) and transforming

to r0� ¼ r0 � r=2, the two integrals factorize, Pqm
ret ðtÞ ¼R

d2fr0�U�ðr0�; tÞ
R
d2fr0þUðr0þ; tÞ ¼ jtrÛðtÞj2.

Form factor and diagonal propagator.—Also the form
factor is related to the trace-squared of the time-evolution

operator, Kðt=tHÞ ¼ D�1
H
jtrÛðtÞj2 for t * tH=DH , where

tH ¼ hhdi. The factor D�1
H

normalizes lim�!1Kð�Þ ¼ 1.

By comparison with Eqs. (2) and (4),

Pqm
ret ðtÞ ¼

Z
d2frGWðr; t; r; 0Þ ¼ DHKðt=tHÞ: (5)

This remarkable relation expresses the form factor as the
trace over a quantity with a close classical analogue, not as
a squared trace. It is an exact identity and does not involve
any semiclassical approximation.

Contrast Eq. (5) with (1). Both relate Kð�Þ with a return
probability, but there is a clear discrepancy, manifest in the
factor � that appears only in (1). This may not be surprising

given that the two relations refer to return probabilities on
the quantum and the classical level, respectively. However,
if we take into account also Eqs. (3) and (4), we face a
dilemma: There is ample evidence [8–10,12] that the
Wigner propagator generally converges in the classical
limit to the Liouville propagator,

lim
@!0

GWðr00; t; r0; 0Þ ¼ Gclðr00; t; r0; 0Þ: (6)

For up to quadratic Hamiltonians, they are even identical.
Were Eq. (6) correct also for r0 ¼ r00—and on the diagonal
theWigner propagator should behavemore classically than
elsewhere—then lim@!0P

qm
ret ðtÞ ¼ Pcl

retðtÞ should hold as
well.
The derivation of Eq. (1) [6,7] suggests that the factor �

arises as a degeneracy factor due to the coherent superpo-
sition of contributions from different points along a given
periodic orbit, each of which can be interpreted as a
periodic point of its own, � measuring the magnitude of
this set in phase space. We therefore suspect that Eq. (6)
might fail in the presence of constructive quantum inter-
ference. This can be substantiated taking into account
semiclassical approximations for GWðr00; t; r0; 0Þ based on
pairs of classical trajectories [9,10] rcl�ðtÞ, rclþðtÞ, chosen
such that for their respective initial points r0�, r0 ¼ ðr0� þ
r0þÞ=2, and likewise for r00�. Specifically for the diagonal
propagator, this requires that both rcl�ðtÞ and rclþðtÞ be
periodic orbits. The set of midpoints �rðtÞ ¼ ½rcl�ðtÞ þ
rclþðtÞ�=2 then forms a closed curve in phase space as
well and contributes to the diagonal propagator hence the
form factor, but need not consist of periodic points proper.
It is tempting to interpret also the prefactor 2=� in

Eq. (1) as a degeneracy factor and to look for phase-space
manifolds that in time-reversal invariant systems con-
tribute the extra weight to P

qm
ret ðtÞ: They can be found in

sets of midpoints between symmetry-related pairs of peri-
odic orbits, located in the symmetry (hyper)plane p ¼ 0.
Similarly, other nondiagonal contributions to the form
factor [4,5] can be associated to nonclassical enhance-
ments of the diagonal Wigner propagator.
Examples.—In order to render our argument more quan-

titative, we first discuss the case of discrete time: Consider
a set of periodic points rjðnþ NjÞ ¼ rjðnÞ, n ¼
0; . . . ; Nj � 1, of a symplectic map M. In their vicinity,

the semiclassical Wigner propagator is given by
GWjðr00; Nj; r

0; 0Þ ¼ �ðr00 �Mjr
0Þ, Mj denoting MNj lin-

FIG. 1 (color online). Schematic plot of a set of periodic points
with period 5 of a symplectic map with their midpoints (a) and
surface formed by midpoints of a fictitious continuous periodic
orbit that is not circularly symmetric nor confined to a plane (b).
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earized near r0, r00. Define midpoints �rjðm; nÞ ¼ ½rjðmÞ þ
rjðnÞ�=2 [cf. Fig. 1(a)]. By construction, �rjðmþ Nj; nÞ ¼
�rjðm; nÞ, but generally MNj �rjðm; nÞ � �rjðm; nÞ. For r0 �
r00 � �rjðm; nÞ, the Wigner propagator carries an additional

oscillatory factor,

GWjðr00; Nj; r
0; 0Þ ¼ 2�ðr00 �Mjr

0Þ � cosf½rjðnÞ � rjðmÞ�
^ ðr00 � r0Þ=@g: (7)

From here, tracing reduces to equating r0 with r00 and
summing points. There are Nj periodic points on the orbit

and NjðNj � 1Þ midpoints [�rjðm; nÞ and �rjðn;mÞ count

separately], resulting in a total return probability

Pqm
retjðNjÞ ¼ N2

j =j detðMj � IÞj ¼ NjP
cl
retjðNjÞ: (8)

The midpoints’ contribution thus is responsible for the
extra factor �, i.e., here, Nj and explains the discrepancy

between classical and quantum return probabilities.
As an example, consider the Arnol’d cat map. It is

defined on a torus, r00 ¼ Tr0ðmod 1Þ, r0; r00 2 ½0; 1Þ2, T a
2� 2 matrix with integer coefficients. We choose the
simplest combination that allows for quantization [13],
T ¼ ð2; 1; 3; 2Þ. On the torus, both position and momentum
are quantized, leading to a finite Hilbert-space dimension
DH . The definition of the Wigner function can be adapted
to this topology to avoid redundancies [14,15]. In Fig. 2,
we show the diagonal Wigner propagator after 1 and 3
iterations of the quantum map. The peaks of the diagonal
propagator coincide perfectly with the periodic points of
the classical map. Moreover, they appear with almost
single-pixel precision. While the uncertainty relation re-
quires a minimum area of DH pixels, this is perfectly
admissible for the propagator. To check Eq. (8), we com-
pared the trace of the diagonal propagator to analytical
results for

P
jN

2
j =j detðMj � IÞj (2.0 and 50.0, resp.), and

found coincidence up to 6 digits.

Going to systems in continuous time, a periodic orbit
rjðsÞ ¼ rjðsþ TjÞ gives rise to midpoints �rjðs0; s00Þ ¼
½rjðs0Þ þ rjðs00Þ�=2. This replaces Eq. (7) with
GWjðr00; t; r0; 0Þ ¼ 2�ðr00 �Mjr

0Þ � cosf½rjðs00Þ � rjðs0Þ�
^ ðr00 � r0Þ=@g�ðt� TjÞ: (9)

The midpoints now merge into a continuous two-
dimensional surface Sj parameterized by (s0, s00), 0 	 s0,
s00 < Tp

j , the length of the orbit. Topologically, it forms a

closed ribbon. As a consequence, the diagonal propagator
consists of a �-function only in the subspace orthogonal
to Sj, GWjðr; t; r; 0Þ ¼ �ðr?Þ�ðt� TjÞ=j detðMj? � IÞj,
where Mj? is the stability matrix restricted to the

(2f� 2)-dimensional subspace r?. Upon tracing, the in-

tegration over Sj yields a factor T
p2
j , its effective area,

P
qm
retjðtÞ ¼ �ET

p2
j �ðt� TjÞ=2�@j detðMj? � IÞj: (10)

In Cartesian phase-space coordinates r, Sj may have a

nontrivial geometry. In general, it will exhibit a Wigner
caustic [16], an overlap of three leaves near the center of
the orbit, owing to the fact that a given point in this region
may be the midpoint of more than one pair of periodic
points on the orbit. The phenomenon can well be observed
in Fig. 3. For periodic orbits not confined to a plane, this
geometric degeneracy is lifted, resulting in folds and self-
intersections, illustrated in Fig. 1(b) for a fictitious periodic
orbit.
A pertinent example is the harmonically driven

quartic oscillator Hðp; q; tÞ ¼ p2=2m�m!2
0q

2=4þ
m2!4

0q
4=64Eb þ Sq cosð!tþ�Þ [17], with generally

mixed phase space. In the diagonal propagator at t ¼ T �
2�=! (Fig. 3), we identify a number of isolated peaks at
periodic points of the classical dynamics, elliptic as well as
hyperbolic, and their midpoints, and an enhancement over
a well-defined region, to be interpreted as the Wigner
caustic of a period-T torus outside the frame shown, as
confirms the coincidence with the corresponding classical
feature in Fig. 3(b).
Refinements and perspectives.—An alternative access to

the Wigner propagator near periodic orbits is Berry’s scar
function, a semiclassical approximation to the Weyl propa-
gator in the energy domain [18]. It responds to the special
situation close to a periodic orbit j by employing local
curvilinear coordinates: energy, time, and remaining
phase-space dimensions rj? perpendicular to the orbit.

Transformed to the time domain and inserted in the diago-
nal Wigner propagator, it leads to the semiclassical ap-
proximation

GWjðr; t; r; 0Þ ¼
T
p
j =2�@

j detðMj? � IÞj�ðrj?Þ�ðt� TjÞ: (11)

The primitive period T
p
j and the determinantal prefactor

measure the length and the effective cross section, resp., of
the ‘‘phase-space tube’’ around the orbit that contributes to

FIG. 2 (color). Diagonal Wigner propagator GWðr; n; r; 0Þ for
the quantized Arnol’d cat map with DH ¼ 60 at n ¼ 1 (a) and
n ¼ 3 (b). Symbols �, + mark periodic points of the corre-
sponding classical map and their midpoints, respectively [for
better visibility of the data, symbols have been suppressed in the
upper half of panel (b)]. Color code ranges from red (negative) to
blue (positive).
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the diagonal propagator. By contrast to Eq. (9), the degen-
eracy factor Tp

j appears here already before tracing: The

use of local coordinates condenses the contributions of
periodic points as well as midpoints onto the orbit.
Equation (11) does not apply outside the orbit j and there-
fore does not allow for indiscriminate tracing over all of
phase space.

The midpoint contribution to GWðr; t; r; 0Þ giving rise to
marked nonclassical features is a manifestation of quantum
coherence. It measures the quantum return probability for
Schrödinger-cat states distributed over different points of
the same periodic orbit. In the presence of incoherent
processes, it decays on the dephasing time scale. The
Wigner propagator readily permits including this effect
[19] and thus to identify exclusively the classical invariant
manifolds [8], unaffected by the uncertainty relation, as
peaks of a purely quantum-mechanical distribution. Phase-
space features associated to nondiagonal contributions to
the form factor will be even more elusive and geometri-

cally more involved, but are in principle accessible to
numerical study.
We have provided analytical and numerical evidence

that Eq. (1) can be interpreted as a global relation between
quantum and classical return probabilities which can be
broken down into contributions of invariant phase-space
manifolds. They enter with weight factors that measure the
size of the set contributing coherently, and lead to impor-
tant exceptions from Eq. (6). Analytical evidence based on
presently available semiclassical approximations [10] in-
dicates they are restricted to the diagonal r0 ¼ r00 (where
they are least expected) and hence of measure zero. They
are qualitatively different for integrable systems: In action-
angle variables, the size of the degenerate sets is indepen-
dent of time [7] and therefore does not contribute an extra
factor t. This in turn reflects the different dimensions and
topologies of periodic tori laminating phase space vs iso-
lated unstable periodic orbits which extend to more in-
volved cases like systems with mixed phase space.
Merging the different contributions on the classical side
into more global quantities like the Frobenius-Perron
modes [8,20] remains as a challenge for future work.
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FIG. 3 (color). Diagonal Wigner (a) and Liouville (b) propa-
gators Gðr; t; r; 0Þ for the harmonically driven quartic oscillator
at t ¼ T � 2�=!, with !0 ¼ 1:0, ! ¼ 0:95, � ¼ �=3, S ¼
0:07, and Eb ¼ 192:0 (color code as in Fig. 2). For better
orientation, we superimpose a stroboscopic surface of section
of the same system [panel (b), black]. The figure-1 structure is
the Wigner caustic of a period-T torus outside the frame shown
(grey). Symbols 
, � mark elliptic and hyperbolic periodic
points of the classical system, resp., and + their midpoints.
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