
Comment on ‘‘Reciprocal Relations for Nonlinear
Coupled Transport’’

In a recent Letter, Astumian [1] described an interesting
procedure which allows one to determine higher-order
reciprocity relations for nonlinear coupled transport based
on the fluctuation relation alone. In this Comment, I would
like to show that the symmetry relations used by Astumian
can provide information on reciprocity of linear coeffi-
cients only (i.e., one can rederive Onsager’s relations),
consistent with the fact that the sole basis for the relations
is the microscopic reversibility used originally by Onsager.
The higher-order coefficients derived in the Letter are, in
fact, incomplete and do not provide additional constraints
on the magnitude of coefficients.

In the Letter [1], the expression for the number of
particles transferred during the excursion away from equi-
librium is separated into two parts: hN�i ¼ hN�;di þ
hN�;ci, where N�;d represents direct terms that vanish

when direct force vanishes (i.e., hN�;d ¼ 0i when ��� ¼
0), and hN�;ci represents the remaining terms which con-

tain cross dependence on ��not�. In deriving the formulas
for reciprocity relations, Astumian incorrectly assumes
that hN�;di does not depend on ��not�. In this Comment,

I point out that hN�;di, as defined in [1], generally depends

on both ��1 and ��2 by providing a simple example.
Establishing this dependence, I proceed to modify the
derivation given in [1] and provide corrected general ex-
pression for higher-order terms.

As an example, I consider two transport processes
coupled as follows. First system consists of left L1 and
right R1 reservoirs which are connected to the opposite
sides of a mesoscopic region M1 (see Fig. 1 of [1]).
Particles can reversibly move between the reservoirs and
the mesoscopic region in accord with the following kinetic
parameters: k�L1

is the rate with which particles move

from L1 to M1, and kL1
is the rate of reverse process.

Similarly, kR1
defines the rate with which the particles

jump from M1 to R1 with the k�R1
being the rate of

the reverse process. Second system possesses similar struc-
ture with L2,M2, andR2. At this point, we introduce the
restriction that at any moment of time, there can only be
one particle in both M1 and M2 (i.e., there can never
simultaneously be one particle in M1 and one particle in
M2). Coupling between the fluxes J1 and J2 arises as a
consequence of this restriction.

Now, the property of interest is the number of particles
transferred between reservoirs during the single excursion
away from steady state. Starting point of derivation in
Ref. [1] is symmetry relation following from microscopic
reversibility that connects PðN1; N2Þ and Pð�N1;�N2Þ.
For this system, it is easy to determine N1 and N2, numbers
of particles transferred between the reservoirs of each sys-
tem during the excursion away from steady state. Indeed,
possible values that N� can take are�1, 0,þ1. To see this,

start with 0 particles in mesoscopic region M; we will
leave this state when a particle enters M from any of the
reservoirs, but immediately return to this state after particle
jumps out of M. We see that there are five nonzero ex-
cursion probabilities Pðþ1; 0Þ; Pð�1; 0Þ; Pð0; 0Þ; Pð0;þ1Þ;
Pð0;�1Þ and they can be easily computed as: Pðþ1; 0Þ /
k�L1

kR1
, Pð�1; 0Þ / k�R1

kL1
, Pð0;þ1Þ / k�L2

kR2
,

Pð0;�1Þ / k�R2
kL2

, Pð0; 0Þ / ðk�L1
kL1

þ k�L2
kL2

þ
k�R1

kR1
þ k�R2

kR2
Þ, where proportionality constant C

ensures that some of all these probabilities is equal to 1.
We notice an important feature that dependence on the
��2 in expression for probability PðN1; 0Þ comes through
the proportionality factor and, therefore, does not contrib-
ute to the symmetry relation (Eqn. (2) in [1]).
In the coupled systems, such as this one, each flux

depends on both driving forces. For example, expression
for the average number of particles transported during the
excursion away from equilibrium N1ð��1;��2Þ can be
written for this system as

hN1i ¼
X

N1;N2

N1PðN1; N2Þ ¼ Pðþ1; 0Þð1� e�N1��1Þ (1)

with the understanding that dependence on ��2 comes
through Pðþ1; 0Þ. We see that ‘‘coupled’’ term, as defined
by [1], is zero for this system hN1;ci ¼ 0 and, hence,

hN1;di ¼ hN1i.
Having established that hN1;di generally depends on both

the ��1 and ��2, we can proceed to derive higher-order
coefficients following the recipe suggested by [1]. The

only modification is that we need to take care of the Gð�Þ
i

depending on both ��’s. The expansion of the ‘‘direct’’
term introduces additional terms into higher-order coupled
coefficient, here denoted as X and Y, that are not restricted
by any relations. So, to the second order, we have

hN1i � f1ð��1Þ þ L��2 þ ðXþ CþMÞ��1��2

þ ðQþM�Þ��2
2;

hN2i � f2ð��2Þ þ L��1 þ ðY þ CþM�Þ��1��2

þ ðQþMÞ��2
1:

(2)

If one were to measure experimentally second order
coefficients, the relations (3) could not provide additional
restrictions on the magnitudes of coefficients even in the
specially symmetric cases.
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