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A nonperturbative theory is presented which allows us to calculate the solvation free energy of
polarizable ions near water-vapor and water-oil interfaces. The theory predicts that larger halogen anions
are adsorbed at the interface, while the alkali metal cations are repelled from it. The density profiles
calculated theoretically are similar to those obtained using molecular dynamics simulations with polar-

izable force fields.
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There are a number of long standing mysteries in the
fields of physical chemistry and biophysics. The
Hofmeister effect [1], which has now been known for
over 120 years is, perhaps, one of the oldest and most
puzzling ones. Hofmeister observed that different ions
have a very different effect on the stability of protein
solutions. While some electrolytes are very efficient at
salting out proteins, others lead to protein precipitation
only at much larger concentrations. A related mystery,
which is also very old, has to do with the surface tensions.
Some hundred years ago Heydweiller [2] noted that adding
a strong electrolyte to water leads to an increase in the
surface tension of the water-air interface. While the depen-
dence on the type of cation is weak, there is a strong
variation of the excess surface tension with the type of
anion—the lighter halides lead to larger excess surface
tension than the heavier ones. The sequence is precisely
the reverse of the Hofmeister one. Both effects are com-
pletely unaccounted for by the current theories of electro-
lytes, which go back to the pioneering work of Debye and
Hiickel (DH) [3,4] and Onsager and Samaras (OS) [5-7].

Some clues to the failure of the DH and the OS theories
started to appear in the 1990s when the photoelectron emis-
sion experiments [8] and molecular dynamics simulations
with polarizable force fields showed that contrary to the
common wisdom and the predictions of OS theory, there
were ions present at the air-water interface [9,10]. The
simulations found that while hard alkali metal ions such
as potassium and sodium and small halides such as fluoride
[11] are repelled from the interface, the softer more polar-
izable anions such as bromide and iodine are actually
attracted to it [12]. Presence of highly reactive halogens
at the air-water interface of aerosol particles might help to
explain the excessive rate of ozone depletion [13].

In this Letter a new class of electrolyte models will be
introduced. Unlike the previous approaches, the polariz-
ability of ions will be explicitly taken into account. The
new theory is intrinsically nonperturbative—all the mo-
ments of the ionic charge distribution, and not just the
dipole, are taken into account. The calculated solvation
free energies are used to obtain the interaction potential of
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polarizable ions with an interface and to calculate the anion
and cation density profiles.

Since the pioneering work of Debye and Hiickel, ions
have been modeled as hard spheres with a point charge
located at the center [4]. While perfectly reasonable for
describing bulk properties of electrolytes, this approach is
bound to fail when applied to polarizable ions near a
dielectric interface. The reason for this is easily understood
by considering the simplest model of a perfectly polar-
izable ion idealized as a conducting spherical shell with a
mobile surface charge. When such an ion moves across a
dielectric air- (oil-)water interface, the charge on its sur-
face shifts progressively from the exposed air or oil portion
to the part that still remains hydrated. For perfectly polar-
izable ions, energy cost of charge localization is very low
and is easily compensated by the decrease in the cavita-
tional energy [14] as the ion moves across the interface.

To make the discussion quantitative, consider a polar-
izable ion—modeled as a conducting sphere of radius a
and charge ¢, see Fig. 1—at an air- (oil)-water interface.
Both half-spaces will be treated as dielectric continuums
with permittivities €,, and €, for water and air (oil), re-
spectively. To gain insight into the problem we first con-
sider an ion with one of its hemispheres submerged in
water and the other exposed to air, # = a, Fig. 1. This
problem can be solved exactly, yielding a purely radial
electric field and the electrostatic self energy of the ion
given by
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FIG. 1. Ion of radius a at an interface.
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We can also calculate the ratio of the surface charge on the
two hemispheres, obtaining ¢,/q,, = €,/€,,. This means
that for an air-water interface with €,/€, = 1/80, the
fraction of the ionic charge located in air is only 1% of
the total charge. For a perfectly polarizable ion half ex-
posed to air, 99% of its charge remains hydrated. This is
very different from nonpolarizable ions, which under the
same conditions will have half of their charge exposed to
the low dielectric environment, at a huge electrostatic self
energy cost. This is the reason why nonpolarizable ions
cannot penetrate into the interfacial region. Evidently this
is not the case for polarizable ions which can adjust their
charge distribution to minimize the electrostatic self en-
ergy cost. Unfortunately, once we leave the symmetric case
of an ion located half way across the interface, no exact
solution is possible and approximate methods must be
used.

The self energy of a perfectly polarizable ion with its
lower extreme situated a distance & from the interface, see
Fig. 1, can be written as,

q2

Us(h) = 2¢,C’

@)

where the capacitance C = af(e,/€,, h/a)and f(x, y)is a
scaling function. In the limit €, < €,,, we can expand f in
powers of €,/¢€,,,

- el o

The value of the scaling function f(0, #/a) determines the
capacitance in the limit of vanishing air permittivity. In this
limit the electric field lines originating on the charge inside
water must be tangential to the interface, so that the normal
component of the electric field vanishes. Even this prob-
lem, however, is difficult to solve analytically. Exact solu-
tion is possible, however, when h/a << 1. In this limit all
charge is confined to a small spherical cap located inside
water. The curvature effects can be neglected, and the
problem reduces to finding the solution of a mixed bound-
ary value problem in cylindrical coordinates: V2¢(z, p) =
0, ¢'(0, p) = 0 for p > p,,, and ¢(0, p) = V for p = p,,,
where prime refers to the derivative with respect to z, V is
the electrostatic potential of the spherical cap, and p,, is its
radius, see Fig. 1. Mixed boundary value problems are
notoriously difficult to study. Fortunately, this particular
one can be solved analytically using the Hankel transform
techniques [15]. We find

#(z p) = v [ dkao(kp)f’“- “4)
T Jo k

The capacitance of the spherical cap can now be calculated
tobe C. = p,,/ 7. We note that this is just half the value of
the capacitance of a disk of radius p,, in vacuum. This
result can be understood by considering a charged disk in
front of a dielectric medium of very low permittivity. The
image charge induced on the interface will then be of the

same sign as on the disk, and in the limit €, < €,, it will
also be the same in magnitude. Thus, one needs only half
the charge of the disk in vacuum to have the same potential.
In view of the natural symmetry of the problem it is
convenient to express C, in terms of the angle variable 6,
so that C. = af/m and f(0, h/a) = 8/m. Writing the
capacitance in terms of 6 extend the range of validity of
C. outside the limit of completely flat disc to larger spheri-
cal caps. In particular, for a particle located half way across
the interface, h = a, 8 = w/2, we find f(0,1) = 1/2,
which agrees precisely with the exact result of Eq. (1).
Furthermore, comparing Egs. (2) and (3) with Eq. (1), we
see that f;(1) = 1/2. We are now in position to write an
approximate expression for the self energy of a perfectly
polarizable ion moving across a dielectric interface,

9 1
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where 0(h) = Re[arccos(1 — %)]. The real part of arccos(x)
is used in order to continue its validity into the regions & >
2a, where 6(h) = 7. For h > 2a the electrostatic self
energy reduces to U, = g’>/2€,,a, which is the usual
Born self energy of a bulk ion. In writing Eq. (5), we
have approximated the scaling function f,(x) by a con-
stant, f;(x) = 1/2. This is permissible, since when the
ratio €,/€,, < 1, the prefactor of f; is very small and
the precise value of f;(x) is not important—it is completely
dominated by the first term of Eq. (3). We should note,
however, that although Eq. (5) is very accurate for
me,/(2€,) <0 <3mw/4, and for h/a > 1, it does not
describe perfectly the crossover from the interfacial to
the bulk regime. The reason for this is that Eq. (5) does
not fully account for the image contribution to the electro-
static energy at distances & > a. It is possible to include
this corrections into the theory at the expense of more
complicated expressions. In practice, however, we note
that the image contribution is screened very strongly [6],
with the characteristic length equal to half the Debye
length &5, Un(z) = g% exp(—2z/€p)/(4€,,z). Therefore,
for concentrations of electrolyte above physiological ones
150 mM, the image contribution decays to zero after only a
few angstroms. For now, we shall, therefore, ignore the
image effect in the crossover region.

The force that drives ions towards the interface arises
from the cavitational energy. Presence of ions disturbs the
hydrogen bond network of water and costs energy. We can
estimate this energy cost by considering a cavity which
must be formed in water to accommodate an ion. For small
cavities of radius a <4 A, which do not significantly
perturb the hydrogen bonds, the energy cost scales with
the volume of the void, while for larger cavities the energy
cost scales with the cavity surface area [16]. This is, the so
called, hydrophobic crossover from small to large length
scales [17]. Small alkali metal and halogen ions are in the
volumetric scaling regime. If one part of an ion leaves the
aqueous environment, the cavitational energy will decrease
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proportionately to the volume exposed. This results in a
short range cavitation potential which forces ions to move
into the air (oil) phase,

va’ for h = 2a
Ucav(h) = {iva3(2)2(3 — ’E’) for0< h<2a

From the results of bulk simulations [14], we calculate that
v =~ 0.3kpT/A3. To account for the fact that a cavity
containing an ion should be somewhat larger than the ionic
crystallographic size, we will use v = 0.5kzT/A>. This
corresponds to the cavity radius about 20% larger than the
crystallographic radius.

For small nonpolarizable ions, the cavitational energy is
not sufficient to force ions into the low dielectric environ-
ment—the electrostatic energy cost is way too large. On
the other hand, for soft polarizable ions, the electrostatic
self energy cost is very small, since the ionic charge distri-
bution can easily deform to remain mostly within the hy-
drated portion of the ion. The significant gain in the cavita-
tional energy, and the low cost in electrostatic self energy,
makes it energetically favorable for polarizable ions to
move into the interfacial region. The amphiphilic nature
of large ions, such as hexafluorophosphate PF , has been
known for a long time. The cavitational energy for these
ions is so large, that they actually adsorb to the interface,
lowering its surface tension [18]. What has been discov-
ered recently is that smaller polarizable ions apparently can
also have some amphiphilic activity—although not suffi-
ciently large to lower the interfacial tension [8,12].

So far we have considered only perfectly polarizable
ions. Real ions, however, have finite polarizability. It is not
obvious how the effects of finite polarizability can be in-
cluded in the formalism developed above. In fact it is not
even clear, if the concept of bulk polarizability, as a linear
response to the external field, is relevant in the inter-
facial geometry, where a rapid variation of the dielectric
constant makes all the moments of the charge distribu-
tion—not just the dipole—relevant. For perfectly polar-
izable ions we have avoided this difficulty by solving the
full electrostatics problem for a conducting sphere. For
ions of finite polarizability, to have a completely quantita-
tive picture it might be necessary to go to full ab initio
calculations. In the absence of such, we can still gain some
insight into this difficult problem by considering a simple
model. In the spirit of Landau, we will construct the
polarization energy U, by exploiting the symmetries of
the problem.

Consider an ion of radius a and bulk polarizability y. We
will define the relative polarizability of this ion as a =
v/ v, where v, = a’ is the polarizability of an ideal ion of
the same radius, modeled as a conducting sphere. For
nonideal ions with 0 = a < 1, the surface charge can not
fully adjust to the external electric field. Therefore, for
such ions, there is an additional nonelectrostatic—quantum
mechanical—energy cost for dislocating ionic charge from
its position of equilibrium. Suppose that for a given ion the

fraction of its total charge inside water is x, then the charge
exposed to air (oil) will be (1 — x)g. For ions which are
highly polarizable x = 1, as long as # is not too small.
There is, however, a polarization energy cost for shifting a
fraction of the ionic charge (assumed to be originally
uniformly distributed along the surface of the ion) from
its equilibrium position in the air portion of the ion to the
water part. Within our simple dielectric model U, must be
invariant under the transformation ¢ — —g. It must also be
invariant under the transformation § — 7 — 6, when €, <
€,, and x — 1 — x. To respect these symmetries, the po-
larization energy must be an even function of the difference
between the initial (before exposure) and the final (after
exposure) amount of charge on the part of the ion exposed
to air or oil. Taking all these considerations into account
and recalling Eq. (5) for a perfectly conducting sphere, we
arrive at the polarization energy for a nonideal ion,

A | w(1 - x)%e,
U (h; x) = Z[T * €,(m— 0) ]
1 —cos(6)72
+ 8[x - f] , (6)

where B = 1/kgT and Az = ¢°/€, kT is the Bjerrum
length in water. The terms in the first square brackets of
Eq. (6) are the electrostatic self energy costs of the parts of
the ion exposed to the water and the air, respectively. The
second brackets contain the energy cost arising from the
induced inhomogeneity in the ionic surface charge distri-
bution. The coupling constant g must be a function of the
relative polarizability, g(«). In the limit @ — 1, ion be-
comes perfectly polarizable, so that g — 0; while in the
limit @ — 0, ion becomes completely hard and g — . To
account for these, we will write g(a) = y(1 — a)/a,
where y is a pure number. The precise value of y can
only be obtained from the ab initio calculations. For now
we will take it to be of order unity, y = 1. Minimizing
Eq. (6) with respect to x gives the fraction of the total
charge located on the hydrated part of the ion, Xy, (/).
Substituting this back into Eq. (6), yields the polarization
potential that an ion feels as it moves across the interface
U,(h) = U,(h; Xyin(h)). For an ideal ion of & = 1 located
half way across the interface & = a, the energy U ,(a)
reduces precisely to the expression given by Eq. (I).
Therefore, for this case, the formalism developed above
gives the exact result. The total solvation potential felt by
an ion of relative polarizability « is Ug,(h; a) =
Ucav(h) + U, (h). Using this potential, we can calculate
the ionic density profiles inside a small water droplet of
radius R containing N cations and N anion, by explicitly
solving a modified Poisson-Boltzmann equation,

gN [ ePadN=BUsia)
V() = 7( R 120, oPad—BU(a,)
€, ot dreP1 sol /150

e Bad ()= BU(hia)
), )

R 2dreBad)=BU(hia)
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FIG. 2. Density profiles ( X 10%) of KI, KBr, and KClI, from left to right. The radius of the water drop is R = 100 A and it contains
N, = N_ = 380 ions at physiological concentration of 150 mM. Solid curve is for cation (K) and the dashed ones are for anions. In all
cases potassium is depleted from the interface, but there is a formation of a double layer, where the excess of anion directly at the

interface results in a build up of potassium in its vicinity.

where r is the distance measured from the center of the
water droplet, h = R — r, and «, and «, are the relative
polarizabilities of cations and anions, respectively. The
density profiles for electrolyte solutions of KI, KBr, and
KCl are presented in Fig. 2. The polarizabilities of ions
yk =079 A% ¥y =74 A% yp, =507A% yq=
3.77 A3, where take from Ref. [19] and the ionic sizes
ax = 149 A, a; =205 A, ag, = 1.8 A, ac = 1.64 A,
from Ref. [20]. In agreement with the polarizable force
fields simulations, the theory predicts that iodine is
strongly adsorbed at the air-water interface. We also find
that there is a significant concentration of bromide, while
chloride, potassium and fluoride (not shown) are depleted
from the interfacial region. The current theory, however,
predicts that there is less halide ion adsorption than is
found in the simulations. The difference might due to the
overestimate of the neat water-vapor surface potential
predicted by the polarizable force field simulations to be
=500 mV = —20kgzT/q. Such a huge junction potential
will irreversibly drive polarizable halides toward the vapor
phase, resulting in a large density build up along the inter-
face. Recent ab initio simulations [21], however, find a
much smaller contact potential, —18 mV = —0.7kzT/q,
for a water-vapor interface. This might lead to a smaller
adsorption, in line with the predictions of the present
theory. Finally, since the surface tension of electrolyte
solution is directly related to ionic adsorption in the inter-
facial region, the theory developed also accounts for the
Hofmeister series for halogens.
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