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Based on the Ginzburg-Landau approach, we generalize the Kittel theory and derive the interpolation

formula for the temperature evolution of a multidomain polarization profile Pðx; zÞ. We resolve the long-

standing problem of the near-surface polarization behavior in ferroelectric domains and demonstrate

polarization vanishing instead of the usually assumed fractal domain branching. We propose an effective

scaling approach to compare the properties of different domain-containing ferroelectric plates and films.
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The design of ferroelectric devices necessitates taking
into account such finite size effects as the formation of
polarization-induced surface charges that, in turn, produce
the energy consuming electrostatic depolarizing fields (see
Ref. [1] for review). As a result, regular periodic structures
of 180� domains that alternate the surface charge distribu-
tion, first proposed by Landau and Lifshitz [2,3] and by
Kittel [4] for ferromagnetic systems, can be formed in uni-
axial easy-axis (natural or stress-induced) ferroelectric
plates or films as an effective mechanism to confine the de-
polarization field to the near-surface layer and reduce its
energy [Fig. 1(a)]. The energy balance between the field-
penetration depth (� domain width d) and domain wall
(DW) concentration (�d�1) leads to the famous square-
root Kittel dependence of d on the film thickness 2af
[4–7]:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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21�ð3Þ ’ 3:53;

(1)

where �k and �? are the longitudinal and transversal

dielectric constants and �0x is the transverse coherence
length (roughly equal to the DW thickness).

Consider the standard geometry [5] when the uniaxial
ferroelectric film is sandwiched by electroded paraelectric
passive layers of width ap and permittivity "p. The multi-

domain state should exist in certain intervals of film thick-
ness 2af as shown in the phase diagram in Fig. 1(c) and

defined by the condition that delineates the applicability of
Eq. (1) and of our further consideration:

�0x < dð2afÞ< ap (2)

the dependence dð2afÞ being given by (1). We also assume

the most realistic case "p � "? < "k that gives d � af.

At this stage, the properties of domain structure do not
depend on ap, "p, and electrodes. For thicker films, when

dð2afÞ approaches to ap, the emergent depolarizing field

interacts with screening electrodes, Eq. (1) is no longer
valid, d grows exponentially with a�2

p , and domains

practically emerge from the sample. However, in free
standing electrodeless sample (ap ! 1), Kittel domains

can exist in a wider interval of 2af unless another restrict-

ing mechanism of the internal free charges screening does
not came into the play. For thinner films, we are turning to
the region of little-studied atomic-size (microscopic) do-
mains [8].
While domain structures should play a crucial role in the

properties of thin ferroelectric films, only a few theoretical
analytical studies of their temperature dependence have
been performed. In particular, the mostly used Kittel ap-

c)

a)

Para

Para

ap
ap

Ferro2a
f

E
P

d 0 2 4 6
−1

−0.5

0

0.5

1

x

sn
(x

,m
)

m=0
m=0.8
m=0.99

b)

FIG. 1 (color online). (a) Multidomain texture of ferroelectric
polarization in uniaxial ferroelectric film, sandwiched by two
paraelectric (dead) layers. The emerging depolarization electric
field is provided by alternating polarization-induced surface
charges and confined in the near-surface layer of thickness,
comparable with domain width d. (b) Elliptical functions y ¼
snðx;mÞ for different parameters m that we use to model the
domain profile at different t. (c) Phase diagram of domain states
as function of sample thickness 2af and reduced critical tem-

perature t ¼ T=Tc0 � 1. Polarization profiles of hard and soft
domains were obtained by numerical solution of Eqs. (6)–(9).
We assume that ßk ’ 500, "? ’ 100, "p � "?, ßk, �0x ’ 1 nm,

and ap ’ 30 nm.
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proach [3–5] in which the domain texture is considered as a
set of up- and down-oriented (hard) domains, having a flat
polarization profile Pðx; zÞ ¼ �P0 (DW supposed to be
infinitely thin and boundary effects on the ferroelectric-
paraelectric interface neglected), is valid only far below the
transition temperature Tc. Although the more general con-
sideration, proposed by Chensky and Tarasenko (CT) [9]
(see also [6,10]) and based on Ginzburg-Landau equations
coupled with electrostatic equations is valid in the whole
temperature interval, only the solution close to Tc was
found.

It is the objective of the present Letter to establish the
approach that permits to model the temperature evolution
of domain structure. Basing on CTequations, we derive the
analytical expression (19) for domain polarization profile
that is valid in the whole temperature interval and includes
the Kittel (at low T) and CT (at T ¼ Tc) solutions as
particular cases. Then, we deduce universal scaling rela-
tions between parameters of the multidomain state that
should be useful in treatment of experimental data. Our
approach is complimentary to the frequently used first-
principia simulations (see, e.g., [11]), that reproduce the
domain structure but give no general vision and parameter
dependence of the results.

To deduce the CT equations, we are basing on the Euler-
Lagrange variational formalism that permits also to obtain
the correct boundary conditions as variation of surface
terms. The generating energy functional is written as [3]

F¼
Z

~�ðP;EÞdxdz; ~�ðP;EÞ¼ ~�ðP;0Þ�EP� 1

8�
E2

(3)

whereE¼ðEx;EzÞ, P ¼ ðPx; PzÞ and the field-independent
part

~�ðP; 0Þ ¼ 4�
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1
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4�
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fðPÞ (4)

includes the transversal Px, and nonpolar longitudinal Pzi

noncritical contributions ("?, "ik � 1). The nonlinear

Ginzburg-Landau energy depends on the spontaneous
z-oriented polarization P (assuming that Pz ¼ Pzi þ P)
and is written as

fðPÞ ¼ t

2
P2 þ 1

4
P�2
0 P4 þ �2

0x

2
ð@xPÞ2 þ

�2
0z

2
ð@zPÞ2 (5)

where the reduced temperature t is expressed via the bulk
critical temperature as: t ¼ T=Tc0 � 1, parameter ßk is

expressed via paraelectric Curie constant C, and via lon-
gitudinal zero-temperature permittivity "k in (1) as: ßk ¼
C=Tc0 ’ 2"k, and coefficient P0 is roughly equal to the

saturated bulk polarization at T � Tc.
The variation of (3) with respect to P and the electro-

static potential ’ (E ¼ �r’) and excluding of the non-
essential variables Px and Pzi gives the system of required
equations that describe the ferroelectric transition taking
into account the depolarizing field:

ðt� �2
0x@

2
x � �2

0z@
2
zÞPþ ðP=P0Þ2P ¼ � ßk

4�
@z’;

ð"ik@2z þ "?@2xÞ’ ¼ 4�@zP:
(6)

These equations should be completed by the Poisson equa-
tion for paraelectric media in which ferroelectric film is
embedded:

ð@2z þ @2xÞ’ðpÞ ¼ 0; (7)

and by boundary conditions at the Para-Ferro interface

"ik@z’� "p@z’
ðpÞ ¼ 4�P; ’ ¼ ’ðpÞ; @zP ¼ 0

(8)

that are also obtained as result of variation of (3) [12].
Periodic conditions

Pðx; zÞ ¼ Pðxþ 2d; zÞ ’ðx; zÞ ¼ ’ðxþ 2d; zÞ (9)

with variational parameter d are imposed to describe the
periodicity of domain structure.
A simplification can be achieved if we present the initial

functional (3) using the dimensionless (prime) variables

z¼ afz
0; x¼ ��1=2�0xx

0; t¼ �t0; P¼ �1=2P0P
0;

’¼ 1

ßk
�3=2afP0’

0; F¼ af�0x

ßk
�3=2P2

0F
0 (10)

with

� ¼
�
ßk
"?

�
1=2 �0x

af
� 1 (11)

in truncated form,
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Z �

4�

�
1

2
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�
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8�
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that was obtained after neglecting the small terms
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�
"?
ßk

�
1=2�0z

af
ð@0zP0Þ2; Â2¼"ik

ßk

�
ßk
"?

�
1=2�0x

af
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(13)

(justification is given in [13]) and minimizing over Px, Pzi.
The Euler-Lagrange variation of (12) over P0 and ’0

gives the corresponding dimensionless equations

ðt0 � @02x ÞP0 þ P03 ¼ � 1

4�
@0z’0; (14)

@02x ’0 ¼ 4�@0zP0; (15)

and boundary conditions at z0� ¼ 0 and at z0þ ¼ 2a0f ¼ 2

P0 ¼ 0; ’0 ¼ ’0ðpÞ: (16)

that are simpler then conditions (8) since the order of (6)
was reduced by neglecting (13). We stress here that these

PRL 102, 147601 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

10 APRIL 2009

147601-2



conditions are derived from functional (12) as variational
surface terms.

Passage to dimensionless variables is the powerful tool
that permits to study the various properties of ferroelectric
domains even without solution the differential equations.
Note first that Eqs. (14) and (15) contain only one driving
variable—the dimensionless temperature t0. Therefore, the
‘‘master’’ temperature dependence of any physical pa-
rameter calculated from (14) and (15) can be rescaled for
any other ferroelectric sample, using the relations (10).

We derive now such ‘‘master’’ variational solution of
Eqs. (14) and (15) for domain profile P0ðx0; z0; t0Þ valid in
the whole temperature interval. Note first that these equa-
tions can be solved analytically close to the transition to a
multidomain ferroelectric state [9,10] that occurs at

t0c ¼ ��; tc ¼ �2�

ffiffiffiffiffiffiffi
ßk
"?

s
�0x

2af
(17)

(in dimensionless and dimensional variables), when polar-
ization has the sinusoidal (soft) distribution

P0ðx0; z0Þ ¼ Aðt0Þ sin�x
0

d0c
sin�z0 (18)

with the half-period d0c ¼
ffiffiffiffiffiffiffi
2�

p
(that is expressed as (1) in

dimensional variables but with � ¼ � and �k ¼ ßk=2). At
lower temperatures, domain walls become sharper due to
the admixture of higher harmonics. At lower temperatures,
the domains recover the (hard) Kittel-like profile.

To account for both these cases by the unique interpo-
lation formula, we shall exploit the periodical elliptical
sinus function y ¼ snðx;mÞ ¼ snðxþ 4K;mÞ depicted in
Fig. 1(b), frequently used to describe the incommensurate
phases [14]. The 1=4 of the elliptical sinus period is given
by the tabled first kind elliptical integral KðmÞ [15]. The
useful property of snðx;mÞ is that, depending on the pa-
rameter 0<m< 1, it recovers the all described above
domain regimes: from the soft one (18) at m ¼ 0 when
snðx;mÞ ! sinx [like in Eq. (18)] to the hard (Kittel-like)
one at m� 1 when snðx;mÞ ! stepwise function.

After some algebra [13], we arrive to the following
variational expression

P0 ¼ Aðt0Þsn
�
4K1ðt0Þ
2d0ðt0Þ x

0; m1ðt0Þ
�
sn½K2ðt0Þz0; m2ðt0Þ� (19)

where the temperature dependencies of parameters m1ðtÞ
and m2ðtÞ, elliptic integrals K1ðtÞ and K2ðtÞ, amplitude

AðtÞ, and domain lattice half-period dðtÞ are presented in
Fig. 2 and for practical use are approximated as

A0ðt0Þ ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 tanh0:35ðt0 � t0cÞ

q
; d0ðt0Þ ’ 2:6

K12ðt0Þ ’ 0:85
ffiffiffiffiffiffiffiffi
�t0

p
; m12ðt0Þ ’ tanh0:27ðt0c� t0Þ:

(20)

Formula (19) satisfies the boundary conditions

P0ðx0; z0Þ ¼ P0ðx0 þ 2d0; z0Þ; P0ðx0; 0Þ ¼ P0ðx0; 2Þ ¼ 0;

(21)

recovers the soft domain structure (18) at t0c when

m12ðt0cÞ ¼ 0, Aðt0Þ � ðt0c � t0Þ1=2 and the Kittel-like struc-

ture at low t0c whenm12ðt0cÞ ! 1, Aðt0Þ ’ ð�t0Þ1=2, and gives
the domain profile at arbitrary t0. Parameters K12ðt0Þ deter-
mine the space scale of polarization variation: in dimen-
sional variables, the characteristic domain wall thickness is

�xðtÞ ¼ �0x=ð�tÞ1=2 whereas the thickness of the near-
surface layer where PðzÞ restores its equilibrium value is

�d=ð�tÞ1=2 � ðßk=�?Þ1=2 (i.e., �d at low t).
Variation and vanishing of polarization at the sample

surface modifies the initial assumption of the Kittel model
that polarization is permanent inside domain and resolves
the long-standing paradox [3,16] according to which the
permanent domain polarization should be reoriented close
to sample surface by its own depolarization field that exists
in the near-surface layer.
As it follows from our calculations, the nonuniform

distribution of polarization pumps the depolarization
charge �ðrÞ � divP from the sample surface inside the
near-surface layer �d, reducing the unfavorable depolar-
ization field [13] and its energy Ed � E2=4�� 4�P2. The
price of this—the dumping of the condensation energy
Ec � 4�P2=�k—is not so high because �k � 1. That is
why we believe that the near-surface polarization vanish-
ing is a more effective mechanism to overcome the Kittel
paradox in ferroelectrics and reduce the near-surface de-
polarization energy than the usually assumed [3,16] but
rarely observed fractal branching of alternatively oriented
permanent-polarization domains near the sample surface.
Polarization decay at the surface is the consequence

of the boundary condition P0 ¼ 0 of simplified Eqs. (14)–
(16). The validity of this effect is illustrated in Fig. 3 where
we compare the numerical solution of simplified Eqs. (14)–
(16) [Fig. 3(b)] with that for the complete set of CT
equations [Fig. 3(a)]. Clearly, the tendency of polarization
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FIG. 2 (color online). Temperature de-
pendencies of parameters of Eq. (19):
(a) elliptic arguments m1 and m2, elliptic
integrals K1 and K2, (b) domain ampli-
tude A and domain lattice period d0. All
the variables are dimensionless.
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vanishing is conserved for the case of general solution in
Fig. 3(a), although the ‘‘real’’ boundary condition @zP ¼ 0
(8) is satisfied exactly at the surface. Interesting to note that
the precursor of the competitive surface domain branching
is also seen at Figs. 3(a) and 3(b) as ripples at the domain
endpoints. The corresponding variational solution (19) at
Fig. 3(c) is more smooth, but correctly represents the
properties of numerical profile.

We present now several remarkable conclusions about
the physical properties of the multidomain state which can
be obtained only from the scaling properties (10), without
solution of CT Eqs. (6)–(9). (i) Any transverse length

parameter scales as ��1=2�0x. This, in particular, jus-
tifies the Kittel formula (1) for the domain width d even
beyond the flat domain approximation. A convincing
demonstration of the validity of this scaling law was re-
ported recently for various ferroelectric and ferromag-
netic materials [7]. The temperature dependence dðtÞ
can be incorporated into (1) as dependence � ¼ �ðtÞ.
Meanwhile, the results shown in Fig. 2(b) as well as
finite-element simulations [6] indicate that the depen-
dence dðtÞ is very weak, and hence, one can extend the
parameter � ’ 3:53 from (1) to any temperature. This, in
particular, implies the low temperature hysteresis related
with motion of DW. (ii) The temperature t scales as �.
Thus, to compare the domain-provided physical properties
of different plates or films (even constructed from different
materials), it should be instructive to trace their tempera-
ture dependencies using the rescaled coordinate t=�.
(iii) All the domain-related properties and, in particular,
the transition temperature tc (17) and the soft-to-hard
domain crossover temperature t	 � 10tc scale as 1=2af
with plate (film) width, as illustrated in Fig. 1(c). The
temperature interval for the existence of soft-domains
�t ¼ tc � t	 growth dramatically with decreasing film
thickness and one can expect that for thin films with 2af <

100 nm, only soft domains with a gradual polarization
distribution are possible.

Summarizing, we conclude that domains in any ferro-
electric sample and at any temperature can be easily ob-
tained from interpolation formulas (19) and (20) applying
the scaling relations (10). This can be especially helpful to
treat the experimental data, involving the local field distri-
bution of polarization inside domains like ESR or Raman
spectroscopy, TEM domain imagery, etc.

We demonstrated that depending on the temperature and
sample width, domains can have soft (gradual) or hard
(Kittel) profile. In any case, polarization has the tendency
to vanish at sample surface.

Basing on universal scaling relations (10), we have
demonstrated how the physical properties of the different
multidomain films can be compared and mapped onto each
other. We hope that such method will give the power tool
for analysis and systematization of numerous experimental
data for thin ferroelectric films.
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FIG. 3 (color online). Polarization of
Kittel domain. (a) Numerical solution
of complete CT Eqs. (6)–(9). (b) Nu-
merical solution of simplified Eqs. (14)–
(16). (c) Interpolation formula (19).
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