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The Goos-Hänchen (GH) effect is an interference effect on total internal reflection at an interface,

resulting in a shift � of the reflected beam along the interface. We show that the GH effect at a p-n

interface in graphene depends on the pseudospin (sublattice) degree of freedom of the massless Dirac

fermions, and find a sign change of � at angle of incidence �� ¼ arcsin
ffiffiffiffiffiffiffiffiffiffiffiffi
sin�c

p
determined by the critical

angle �c for total reflection. In an n-doped channel with p-doped boundaries the GH effect doubles the

degeneracy of the lowest propagating mode, introducing a twofold degeneracy on top of the usual spin and

valley degeneracies. This can be observed as a stepwise increase by 8e2=h of the conductance with

increasing channel width.
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Analogies between optics and electronics have inspired
the research on graphene since the discovery of this mate-
rial a few years ago [1]. Some of the more unusual anal-
ogies are drawn from the field of optical metamaterials. In
particular, negative refraction in a photonic crystal [2] has
an analogue in a bipolar junction in graphene if the width d
of the p-n interface is less than the electron wavelength �F

[3]. Negative refraction is only possible for angles of
incidence � less than a critical angle �c. For �> �c the
refracted wave becomes evanescent and the incident wave
is totally reflected with a shift � of order �F along the
interface. This wave effect is known as the Goos-Hänchen
effect [4], after the scientists who first measured it in 1947.
The GH effect was already predicted in Newton’s time and
has become a versatile probe of surface properties in
optics, acoustics, and atomic physics [5]. In particular,
the interplay of the GH effect and negative refraction plays
an important role in photonic crystals and other metama-
terials [6,7].

The electronic analogue of the GH effect has been
considered previously [8–11], including relativistic correc-
tions, but not in the ultrarelativistic limit of massless
electrons relevant for graphene. As we will show here,
the shift of a beam upon reflection at a p-n interface in
graphene is strongly dependent on the sublattice (or ‘‘pseu-
dospin’’) degree of freedom—both in magnitude and sign.
We calculate the average shift � after multiple reflections
at opposite p-n interfaces and (contrary to a recent expec-
tation [12]) we find that � changes sign at �� ¼
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffi
sin�c

p
. In search for an observable consequence of

the GH effect we study the conductance of the p-n-p
junction, for current parallel to the interfaces (see Fig. 1).
We find that the lowest mode in the n-doped channel has a
twofold degeneracy, observable as an 8e2=h stepwise in-
crease in the conductance as a function of channel width.

We recall some basic facts about the carbon monolayer
called graphene [13,14]. Near the corners of the Brillouin
zone the electron energy depends linearly on the momen-

tum, like the energy-momentum relation of a photon (but
with a velocity v that is 300 times smaller). The corre-
sponding wave equation is formally equivalent to the Dirac
equation for massless spin-1=2 particles in two dimen-
sions. The spin degree of freedom is not the real electron
spin (which is decoupled from the dynamics), but a pseu-
dospin variable that labels the two carbon atoms (A and B)
in the unit cell of a honeycomb lattice.
To calculate the GH shift we consider a beam,

� inðx; yÞ ¼
Z 1

�1
dqfðq� �qÞeiqyþikðqÞx e�i�ðqÞ=2

ei�ðqÞ=2

 !
; (1)

FIG. 1 (color online). Upper panel: Potential profile of an
n-doped channel between p-doped regions. Lower panel: Top
view of the channel in the graphene sheet. The blue solid line
follows the center of a beam on the A sublattice, while the red
dashed line follows the center on the B sublattice. The two
centers have a relative displacement �0. Upon reflection, each
pseudospin component experiences alternating large and small
shifts ��.
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incident on a p-n interface at x ¼ 0 from an n-doped
region x < 0. The spinor wave function � ¼ ð�þ;��Þ
has pseudospin component �þ and �� on the A and B
sublattices. We require that �in is a solution of the Dirac
equation,�

�i@v�x

@

@x
� i@v�y

@

@y
þU

�
� ¼ E�; (2)

withU ¼ 0 (zero potential in the n-doped region) and E ¼
EF (the Fermi energy). This requirement fixes the depen-
dence of the longitudinal wave vector k and the angle of
incidence � on the transverse wave vector q,

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEF=@vÞ2 � q2

q
; � ¼ arcsinð@vq=EFÞ: (3)

For brevity, we will set @v � 1 in some intermediate
equations (restoring units in the final answers).

The transverse wave vector profile fðq� �qÞ of the beam
is peaked at some �q 2 ð0; EF=@vÞ, corresponding to an
angle of incidence �� ¼ arcsinð �q=EFÞ 2 ð0; �=2Þ. None of
our results depend on the shape of the profile, but for
definiteness we take a Gaussian, fðq� �qÞ ¼ exp½� 1

2 ðq�
�qÞ2=�2

q�, of width �q.

For �q small compared to the Fermi wave vector kF ¼
EF=@v we may expand kðqÞ and �ðqÞ to first order around
�q, substitute in Eq. (1), and evaluate the Gaussian inte-
gral to obtain the spatial profile of the incident beam. At
the interface x ¼ 0 the two components �in� /
exp½� 1

2 �
2
qðy� �yin�Þ2� of �inð0; yÞ are Gaussians of the

same width �y ¼ 1=�q, centered at two different mean y

coordinates

�y in� ¼ �1
2�

0ð �qÞ ¼ �1
2ðkF cos ��Þ�1: (4)

(The prime in �0 indicates the derivative with respect to q.)
The separation �0 ¼ j �yinþ � �yin�j ¼ ðkF cos ��Þ�1 of the two
centers is of the order of the Fermi wavelength �F ¼
2�=kF, which is small compared to the width �y but of

the same order of magnitude as the GH shift—so it cannot
be ignored.

Similar considerations are now applied to the reflected
wave,

� out ¼
Z 1

�1
dqfðq� �qÞeiqy�ikðqÞxrðqÞ �iei�ðqÞ=2

ie�i�ðqÞ=2

 !
;

(5)

obtained from the incident wave (1) by the replacements
k � �k, � � �� � and multiplication with the reflec-

tion amplitude rðqÞ ¼ jrðqÞjei�ðqÞ. The two components
�out� of�outð0; yÞ at the interface are Gaussians centered at
�y out� ¼ ��0ð �qÞ � 1

2�
0ð �qÞ ¼ ��0ð �qÞ � 1

2ðkF cos ��Þ�1: (6)

Comparison with Eq. (4) shows that the first component
of the spinor is displaced along the interface by an amount
�þ ¼ youtþ � yinþ ¼ ��0ð �qÞ � �0, while the second com-
ponent is displaced by �� ¼ yout� � yin� ¼ ��0ð �qÞ þ �0.

The average displacement,

� ¼ 1
2ð�þ þ ��Þ ¼ ��0ð �qÞ ¼ �Im

d

dq
lnr; (7)

is the GH shift.
The formula (7) is generally valid for reflection from any

interface. To apply it to the step function p-n interface we
calculate the reflection amplitude by matching�in þ�out

at x ¼ 0 to the evanescent wave

� ev ¼
Z 1

�1
dqCðqÞeiqy��ðqÞx iðU0 � EFÞ

�ðqÞ þ q

� �
; (8)

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � ð@vÞ�2ðEF �U0Þ2

q
: (9)

This is a solution of the Dirac Eq. (2) (with U ¼ U0 and
E ¼ EF) that decays into the p-doped region x > 0 for
@vjqj> jEF �U0j.
Continuity of the wave function at x ¼ 0 allows us to

eliminate the unknown function CðqÞ and to obtain the
reflection amplitude,

r ¼ iei�ðEF �U0Þ þ �þ q

EF �U0 þ iei�ð�þ qÞ : (10)

The modulus jrj ¼ 1 for angles of incidence �> �c �
arcsinjU0=EF � 1j such that there is total reflection.
Substitution into Eq. (7) then gives the GH shift,

� ¼ sin2�þ 1�U0=EF

� sin� cos�
: (11)

A negative GH shift (in the backward direction) appears
at a p-n interface (when EF < U0) for angles of incidence
�c < �< �� � arcsin

ffiffiffiffiffiffiffiffiffiffiffiffi
sin�c

p
. For �> �� the GH shift is

positive (in the forward direction), regardless of the rela-
tive magnitude of EF and U0. In Fig. 2 we have plotted the
� dependence of � for two representative cases.
As illustrated in Fig. 1, the GH shift accumulates upon

multiple reflections in the channel between two p-n inter-
faces. If the separation W of the two interfaces is large

FIG. 2. Dependence on the angle of incidence � of the GH
shift �, calculated from Eq. (11) for U0=EF ¼ 1:5 (solid curve,
p-n interface) and for U0=EF ¼ 0:5 (dashed curve, n-n inter-
face). The critical angle for total reflection (below which � ¼ 0)
equals �c ¼ 30� in both cases. The sign-change angle �� ¼ 45�
for U0=EF ¼ 1:5.
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compared to the wavelength �F, the motion between re-
flections may be treated semiclassically. The time between
two subsequent reflections isW=v cos�, so the effect of the
GH shift on the velocity vk along the junction is given by

vk ¼ v sin�þ ð�=WÞv cos�. Substitution of Eq. (11)

shows that, for U0 > EF, the velocity vk vanishes at an

angle ��� satisfying the equation

sin 2��� ¼ ðU0=EF � 1Þð�W þ 1Þ�1; (12)

which for kFW � 1 has the solution

��� ¼ �c þ ð1� sin�cÞ2
ðkFWÞ2 sin2�csin

2�c

þOðkFWÞ�4: (13)

The vanishing velocity shows up as a minimum in the
dispersion relation, obtained by solving the Dirac equation
(2) with the potential profile shown in Fig. 1 (upper panel).
Matching of propagating waves to decaying waves at x ¼
�W and x ¼ 0 produces the following relation between E
and q:

½q2 þ EðU0 � EÞ� sinkW þ k� coskW ¼ 0; (14)

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � q2

q
; � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � ðU0 � EÞ2

q
: (15)

The dispersion relation EðqÞ is plotted for the first few
modes in Fig. 3. The slope determines the velocity, vk ¼
dE=@dq. The minima in the dispersion relation where
vk ¼ 0 are clearly visible for E & U0. The locations of

the minima are precisely [15] given by Eq. (12) (red dashed
curve). For E * U0 the GH effect increases the velocity,
which is visible in the dispersion relation as a local in-
crease in the slope of the dispersion relation. The solid
curves in Fig. 3 give the dispersion relation of modes that
are confined to the narrow n-doped channel. At the dotted
lines @vjqj ¼ jE�U0j these channel modes are joined to
the modes in the wide p-doped region (as indicated by the
dotted curves in Fig. 3).
As the channel width is reduced so that U0W=@v be-

comes of order unity, we enter the fully quantum mechani-
cal regime. The minimum in the dispersion relation
becomes very pronounced for the lowest channel mode,
as we show in Fig. 4. There are two minima at q 	 1=W
and q 	 �1=W, each contributing to the conductance a
quantum of e2=h per spin and valley degree of freedom.
The total contribution to the conductance from the lowest
channel mode is therefore 8e2=h. If W is reduced further,
the two degenerate minima in the dispersion relation merge
into a single minimum at q ¼ 0 (this happens at
U0W=@v ¼ 1:57), and for smaller W the lowest channel
mode again contributes the usual amount of 4e2=h to the
conductance.
To test these analytical predictions, we have performed

numerical simulations of electrical conduction in a tight-
binding model of a graphene sheet covered by a split-gate
electrode. The geometry is similar to that studied in
Ref. [16] (but not in the p-n junction regime of interest
here). Using the recursive Green function technique on a
honeycomb lattice of carbon atoms (lattice constant a) we
obtain the transmission matrix t, and from there the con-
ductance G ¼ ð2e2=hÞTrtty. Only the twofold spin degen-
eracy is included by hand as a prefactor, all other
degeneracies follow from the simulation. The graphene
strip is terminated in the x direction by zigzag boundaries

FIG. 3 (color online). Energy E of waves propagating with
wave vector q in the y direction, bounded in the channel �W <
x< 0 by the potential profile in Fig. 1. The different curves
(black solid lines) correspond to different modes. (Only the six
lowest channel modes are shown.) The curves are calculated
from Eq. (15) for U0W=@v ¼ 10 (semiclassical regime). The
velocity vk ¼ dE=@dq in the y direction vanishes at the minima

of the dispersion relation, given by Eq. (12) (red dashed curve).
At the (green) dotted lines @vjqj ¼ jE�U0j the channel modes
are joined to modes in the wide region, as indicated schemati-
cally by the (black) dotted curves.

FIG. 4 (color online). Same as Fig. 3, but now showing the
lowest channel modes in the fully quantum mechanical regime
U0W=@v ¼ 3. The two minima at q ¼ �0:83W�1 each contrib-
ute independently an amount of 4e2=h to the conductance.
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(separated by a distance Wtotal ¼ 220a), while it is infi-
nitely long in the y direction. A smooth potential profile
defines a long and narrow channel of length L ¼ 1760a
and a width W which we vary between 0 and 30a. The
potential rises from 0 in the wide reservoirs (far from the
narrow channel), to U0 ¼ 0:577@v=a underneath the gate,
and has an intermediate value of Uchannel ¼ 0:277@v=a
inside the channel (where the gate is split). The Fermi
energy is kept at EF ¼ 0:547@v=a, so that it lies in the
valence band underneath the gate, while it lies in the
conduction band inside reservoirs and channel.

Results of the simulations are shown in Fig. 5. From the
dispersion relation we read off the total number of prop-
agating modes (dashed curve). The zigzag edges of the
graphene strip support one spin-degenerate edge mode, so
the conductance levels off at 2e2=h as the channel is
pinched off. Upon widening the channel, the new channel
modes have the eightfold degeneracy predicted by our
analytical theory. The valley degeneracy is not exact (no-
tice the small intermediate step at W ¼ 20a), as expected
for a finite lattice constant. The zero-temperature conduc-
tance (thin red curve) shows pronounced Fabry-Perot type
oscillations, due to multiple reflections at the entrance and
exit of the channel, with an envelope that follows closely
the number of propagating modes. At finite temperature
(black curve) the oscillations are averaged out, but the
excess conductance characteristic of the Goos-Hänchen
effect remains clearly observable at the temperature T ¼
0:02ðU0 � EFÞ=kB used in the simulation.

In conclusion, we have identified and analyzed a novel
pseudospin-dependent scattering effect in graphene, that

manifests itself as an 8e2=h conductance step in a bipolar
junction. This quantum Goos-Hänchen effect mimics the
effects of a pseudospin degeneracy, by producing a pro-
nounced double minimum in the dispersion relation of an
n-doped channel with p-doped boundaries. Such a channel
can be created electrostatically, and might therefore be a
versatile building block in an electronic circuit.
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