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We obtain an exact many-body scattering eigenstate in an open quantum dot system. The scattering

state is not in the form of the Bethe eigenstate in the sense that the wave number set of the incoming plane

wave is not conserved during the scattering and many-body bound states appear. By using the scattering

state, we study the average nonequilibrium current through the quantum dot under a finite bias voltage.

The current-voltage characteristics that we obtained by taking the two-body bound state into account is

qualitatively similar to several known results.
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Mesoscopic transport of interacting electrons has at-
tracted much interest recently [1–4]. A remarkable feature
of the mesoscopic system is the coherence length greater
than the sample size. Awell-known approach to the electric
current across the sample under a finite bias voltage is the
Landauer formula, although the original one is restricted to
the noninteracting case. The nonequilibrium Green’s func-
tion is also employed to study the transport property [5–
10]. To discuss the effect of interactions in this framework,
however, we would have to resort to a perturbation tech-
nique, which is generally a hard task.

In this Letter, we present an exact many-body scattering
eigenstate in an open quantum dot system and apply the
eigenstate to analysis of the nonequilibrium current. The
system is an open interacting resonant-level model
(IRLM), which consists of two leads of noninteracting
spinless electrons that interact with an electron on a quan-
tum dot in between the two leads. Each lead is connected to
a large reservoir. First, we explicitly construct two- and
three-electron scattering states, which are plane waves
before scattering and, at the quantum dot, are partially
scattered to a many-body bound state due to the
Coulomb interaction. Second, by using the scattering
states, we calculate the quantum-mechanical expectation
value of the current through the quantum dot in the second
order of the inverse system length. Third, we study the
statistical average of the nonequilibrium current for a finite
bias voltage, assuming that electrons are completely ther-
malized in each reservoir before returning to the lead.

Our study of the nonequilibrium current is a genuine
extension of the Landauer formula. Our scattering states of
the open system are suitable for describing incident elec-
trons thermalized to a free-electron state in each reservoir.
Some used the Bethe ansatz [11–13] to study the transport
properties of quantum dot systems [14], where the
Landauer formula was formally applied to the quasipar-
ticles in a closed system in equilibrium. However, the
periodic boundary conditions imposed on the Bethe state
are clearly different from the conditions adopted for the
Landauer formula, the conditions that the incident elec-

trons are asymptotically free. Recently, there have been a
few attempts to study the transport properties with a scat-
tering state in the framework of the Lippmann-Schwinger
(LS) equation [15,16]. Our scattering state is a solution of
the LS equation associated with the open IRLM.
A remarkable point of our solution is the appearance of a

many-body bound state in the scattering eigenstate.
Another many-body bound state given by the Bethe ansatz
method is known to be the ground state of the Anderson
model in equilibrium [17]. Our bound state, on the other
hand, is generated as a result of the scattering of an incident
free-electronic plane-wave state (Fig. 1). The interaction
around the dot is a necessary condition of the appearance
of the bound state. The nonequilibrium current is affected
by the interaction through the bound state.
The open IRLM out of equilibrium has been studied

with various approaches [18–22]. We express the quantum-
mechanical expectation value of the current as a series of
the inverse system length to consider the average current,
while the perturbative result [20] gives the average current
as a series of the interaction parameter. The qualitative
behavior of the current-voltage characteristics that we
obtain is similar to the results in Refs. [19–21]. We remark
that, in our results, the effect of the interaction appears in
the quantum-mechanical expectation value, which differs
from the result in Ref. [18].
The Hamiltonian of the open IRLM is given by

H¼X

�

�Z L=2

�L=2
dxcy�ðxÞ1

i

d

dx
c�ðxÞþ �t½cy�ð0Þdþdyc�ð0Þ�

�

þ�dd
ydþX

�

Ucy�ð0Þc�ð0Þdyd; (1)

where cy�ðxÞ and c�ðxÞ are creation- and annihilation-
operators of the electrons in the lead �ð¼ 1; 2Þ, dy and d

are those in the quantum dot, �t ¼ t=
ffiffiffi
2

p
is the transfer

integral between each lead and the dot, �d is the gate
energy of the dot, and Uð>0Þ expresses the Coulomb
repulsion. The dispersion relation in the leads is linearized
in the vicinity of the Fermi energy to be E ¼ k, under the
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assumption that t, �d, and U are small compared with the
Fermi energy [11–13]. We treat the system as an open
system in the limit L ! 1. The lead � is connected
infinitely far way to a large reservoir characterized by the
Fermi distribution with the chemical potential ��. Our
goal is to calculate the statistical average of the current

I ¼ i�t
X

�

ð�Þ�þ1½cy�ð0Þd� dyc�ð0Þ� (2)

for the system under a finite bias voltage, �1 >�2.
We consider the general form of eigenstates. After the

transformation c1=2ðxÞ ¼ ½ceðxÞ � coðxÞ�=
ffiffiffi
2

p
, the

Hamiltonian (1) is decomposed into the even and odd parts.
Because ½H;Ne þ Nd� ¼ ½H;No� ¼ 0 for the number op-

erators Ne=o ¼
R
dxcye=oðxÞce=oðxÞ and Nd ¼ dyd, the set

fNe þ Nd;Nog gives a good quantum number. The
N-electron state jN; ni in the sector with No ¼ n is ex-
pressed in the form

jN; ni ¼
�Z

dxN�ndyngðnÞðx; yÞcye ðx1Þ � � � cye ðxN�nÞ

� cyo ðy1Þ � � � cyo ðynÞ
þ

Z
dxN�n�1dyneðnÞðx; yÞcye ðx1Þ � � � cye ðxN�n�1Þ

� dycyo ðy1Þ � � � cyo ðynÞ
�
j0i; (3)

where we put eðNÞðx; yÞ ¼ 0. The functions gðnÞðx; yÞ and
eðnÞðx; yÞ are antisymmetric with respect to fxig as well as
fyig. The one-electron eigenstate j1; n; ki, (n ¼ 0, 1) with
the energy eigenvalue E ¼ k is obtained by inserting the

eigenfunctions gð0ÞðxÞ ¼ gkðxÞ, eð0Þ ¼ ek or gð1ÞðyÞ ¼
hkðyÞ into the general form (3), where

gkðxÞ ¼ 1
ffiffiffiffiffiffiffi
2�

p eikx
�
�ð�xÞ þ ek

e�k
�ðxÞ

�
;

hkðxÞ ¼ 1ffiffiffiffiffiffiffi
2�

p eikx; ek ¼ 1ffiffiffiffiffiffiffi
2�

p t

k� �d þ i�t2
;

(4)

with the step function �ðxÞ. The linear combination jki ¼
ðj1; 0; ki þ j1; 1; kiÞ= ffiffiffi

2
p

gives a scattering state containing
an incoming electron only in the lead 1. If we imposed
periodic boundary conditions to the leads, the wave num-

ber k allowed for the eigenfunction gð1ÞðxÞ would be differ-
ent from that for gð0ÞðxÞ. Thus, even in the noninteracting

case, the scattering state jki is inconsistent with the peri-
odic boundary conditions.
For N ¼ 2, the eigenvalue problem Hj2; ni ¼ Ej2; ni is

cast into a set of the Schrödinger equations:

�
1

i
ð@1 þ @2Þ � E

�
gð0Þðx1; x2Þ

� t

2
½�ðx1Þeð0Þðx2Þ � eð0Þðx1Þ�ðx2Þ� ¼ 0;

�
1

i

d

dx
þU�ðxÞ þ �d � E

�
eð0ÞðxÞ þ 2tgð0Þðx; 0Þ ¼ 0;

�
1

i
ð@1 þ @2Þ � E

�
gð1Þðx1; x2Þ þ t�ðx1Þeð1Þðx2Þ ¼ 0;

�
1

i

d

dx
þU�ðxÞ þ �d � E

�
eð1ÞðxÞ þ tgð1Þð0; xÞ ¼ 0;

�
1

i
ð@1 þ @2Þ � E

�
gð2Þðx1; x2Þ ¼ 0:

(5)

We construct the eigenfunctions gð0Þðx1; x2Þ, gð1Þðx1; x2Þ,
and gð2Þðx1; x2Þ by imposing the conditions that, in the
region x1, x2 < 0, they are free-electronic plane waves.

The eigenfunction gð0Þðx1; x2Þ is discontinuous at x1 ¼ 0

and x2 ¼ 0, gð1Þðx1; x2Þ at x1 ¼ 0, and eð0;1ÞðxÞ at x ¼ 0.
The value of the functions at the discontinuous point

cannot be determined by Eqs. (5). We then set gð0Þðx; 0Þ ¼
½gð0Þðx; 0þÞ þ gð0Þðx; 0�Þ�=2 and so on. The function

gð2Þðx1; x2Þ should be a free-electron eigenfunction. The
eigenfunctions with the energy eigenvalue E ¼ k1 þ k2,
(k1, k2 2 R) are then given as follows:

2gð0Þðx1; x2Þ ¼
X

Q

sgnðQÞ½gk1ðxQ1
Þgk2ðxQ2

Þ

þ uZ12ðxQ1Q2
ÞeiExQ2�ðxQ1

Þ�;
eð0ÞðxÞ ¼ gk1ðxÞek2 � gk2ðxÞek1 þ

u

it
Z12ð�xÞeiEx;

gð1Þðx1; x2Þ ¼ gk1ðx1Þhk2ðx2Þ � uX1ðx12ÞeiEx2�ðx1Þ;
eð1ÞðxÞ ¼ ek1hk2ðxÞ þ

u

it
X1ð�xÞeiEx;

2hð2Þðx1; x2Þ ¼
X

Q

sgnðQÞhk1ðxQ1
Þhk2ðxQ2

Þ; (6)

where Q ¼ ðQ1; Q2Þ is a permutation of (1, 2), xij ¼ xi �
xj, u ¼ 2U=ð2þ iUÞ, and

ZijðxÞ ¼ ðki � kjÞekiekjeið�d�i�t2Þx�ð�xÞ;
XiðxÞ ¼ t

ffiffiffiffiffiffiffi
2�

p ekie
ið�d�i�t2Þx�ð�xÞ:

(7)

The set fk1; k2g in each of the eigenfunctions gð0Þðx1; x2Þ
and gð1Þðx1; x2Þ is not conserved during the scattering; the
plane wave with fk1; k2g is partially scattered to that with
f�d � i�t2; E� �d þ i�t2g in x1, x2 > 0. In this sense, they
are not the Bethe eigenfunctions [18,23]. We have found
similar eigenfunctions in the Anderson model [24].

FIG. 1. A two-electron scattering state which contains incom-
ing plane waves only in the left lead.
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The second term of each of the first four eigenfunctions
(6) comes from the Coulomb interaction. The imaginary
part of the wave numbers, i�t2, indicates the appearance of a

two-body bound state e��t2jx12j. The interaction is a neces-
sary condition of the appearance of the bound state, and the
strength of binding is determined by �t. A similar two-
photon bound state has been found in a one-dimensional
waveguide coupled to a two-level system [25], where the
bound state has been obtained through an ‘‘S-matrix’’ and
the eigenstate including the bound state has not been
constructed.

We obtain two-electron eigenstates by inserting the
eigenfunctions (6) into the form (3); we denote them by

j2; n; k1; k2i, (n ¼ 0, 1, 2). We notice that, by exchanging
k1 and k2 in j2; 1; k1; k2i, we have another eigenstate
j2; 1; k2; k1i with the same energy. The four eigenstates
satisfy the orthonormal relations in the limit L ! 1:

h2;n;k1;k2j2;n;k01;k02i¼�ðk1�k01Þ�ðk2�k02Þ
��ðk1�k02Þ�ðk2�k01Þ; ðn¼0;2Þ

h2;1;k1;k2j2;1;k01;k02i¼�ðk1�k01Þ�ðk2�k02Þ: (8)

In principle, we can construct eigenstates for a few
electrons. For example, the three-electron eigenfunctions
in the sector with No ¼ 0 are given by

3!gð0Þðx1;x2;x3Þ¼
X

P

sgnðPÞgkP1 ðx1ÞgkP2 ðx2ÞgkP3 ðx3Þþ
u

2

X

P;Q

sgnðPQÞgkP1 ðxQ1
ÞZP2P3

ðxQ2Q3
ÞeiðkP2þkP3 ÞxQ3�ðxQ2

Þ

�u2

2i

X

P;Q

sgnðPQÞhkP1 ðxQ2
ÞZP2P3

ðxQ1Q3
ÞeiðkP2þkP3 ÞxQ3�ðxQ3Q2

Þ�ðxQ2Q1
Þ�ðxQ1

Þ;

2!eð0Þðx1;x2Þ¼
X

P

sgnðPÞgkP1 ðx1ÞgkP2 ðx2ÞekP3 þ
u

2it

X

P;R

sgnðPRÞgkP1 ðxR1
ÞZP2P3

ð�xR2
ÞeiðkP2þkP3 ÞxR2

þu

2

X

P;R

sgnðPRÞZP2P3
ðxR1R2

ÞeiðkP2þkP3 ÞxR2ekP1�ðxR1
Þ

�u2

2t

X

P;R

sgnðPRÞhkP1 ðxR1
ÞZP2P3

ð�xR2
ÞeiðkP2þkP3 ÞxR2�ðxR2R1

Þ�ðxR1
Þ:

(9)

Here, P ¼ ðP1; P2; P3Þ and Q ¼ ðQ1; Q2; Q3Þ are permu-
tations of (1, 2, 3) and R ¼ ðR1; R2Þ is that of (1, 2). The
third term of the eigenfunction gð0Þðx1; x2; x3Þ indicates a
new three-body bound state. The eigenstates in other sec-
tors with No ¼ 1, 2, 3 are constructed in similar ways.

Now we construct a scattering eigenstate by taking a
linear combination of the four two-electron eigenstates as

jk1; k2i ¼ Aj2; 0; k1; k2i þ B1j2; 1; k1; k2i
þ B2j2; 1; k2; k1i þ Cj2; 2; k1; k2i: (10)

Going from the eigenfunctions in terms of the even and odd
parts back to the ones in terms of the leads 1 and 2, we have

fð0=2Þðx1;x2Þ¼h0jc1=2ðx2Þc1=2ðx1Þjk1;k2i and fð1Þðx1; x2Þ ¼
h0jc2ðx2Þc1ðx1Þjk1; k2i. By choosing A ¼ B1 ¼ B2 ¼ C ¼
1=2 in Eq. (10), we obtain the scattering state which
contains an incoming two-electron plane wave only in

the lead 1, i.e., fð1Þðx1; x2Þ ¼ fð2Þðx1; x2Þ ¼ 0 for x1, x2 <
0, which is depicted in Fig. 1. In the sameway, by choosing
A ¼ �B1 ¼ B2 ¼ �C ¼ 1=2, we obtain the scattering
state which contains an incoming one-electron plane

wave in each lead, i.e., fð0;2Þðx1; x2Þ ¼ 0 for x1, x2 < 0.
We denote the former or latter scattering state by jk1; k2i�.
Each scattering state is shown to be a solution of the LS
equation whose incident state is a free-electron plane-wave
state, where the incident state means an eigenstate of the
Hamiltonian (1) with �t ¼ 0. On the other hand, the scatter-
ing state constructed from the Bethe eigenstates [18,23] is
interpreted as the solution associated with an incident state

that depends on the parameter U. We remark that the scat-
tering states are also constructed from a superposition of an
infinite number of the degenerate Bethe eigenstates [23].
We use the two-electron scattering states to calculate the

quantum-mechanical expectation value of the current I in
Eq. (2). The expectation value with respect to the scattering
state jk1; k2i�, (k1 < k2) is calculated as

hk1;k2jIjk1;k2i�
hk1;k2jk1;k2i� ¼ 1

L
½I0ðk1Þ�I0ðk2Þ�þ 1

L2
I�ðk1;k2Þ;

I0ðkÞ¼� t

2
ffiffiffiffiffiffiffi
2�

p ImðekÞ;

I�ðk;hÞ¼ k�h

t
ffiffiffiffiffiffiffi
2�

p ½ReðehÞImðue2kÞ�ReðekÞImðue2hÞ�;

(11)

where L ¼ �ð0Þ is the length of the system. The first term
of order L�1 gives the current of noninteracting electrons.
The correction term of order L�2 containing I�ðk1; k2Þ is
due to the two-body bound state.
We find that, in the limit L, N ! 1, the correction term

in Eqs. (11) contributes to the current. We speculate from
the result of N ¼ 2 that, for general N, similar n-body
bound states (1< n � N) contribute to the term of order
L�n in the expectation value. We assume that the contri-
bution from the two-body bound state is given by the
function I�ðk; hÞ in Eqs. (11). Let jki be an N-electron
scattering state with an incoming N�-electron plane wave
characterized by distinct wave numbers fk�i g in the lead �.
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The speculated form of the expectation value is

hkjIjki
hkjki ¼

1

L

X

�

XN�

i¼1

ð�Þ�þ1I0ðk�i Þþ
1

L2

�X

�

X

i<j

ð�Þ�þ1Iþðk�i ;k�j Þ

þX

i;j

I�ðk1i ;k2j Þ
�
þO

�
1

L3

�
:

We have verified this for N ¼ 3. We neglect the terms of
order higher than L�2 in the expansion [16]. By taking the

limit L, N� ! 1, the sum
PN�

i¼1 divided by L should be

replaced by the integral on k with the zero-temperature
Fermi distribution f�ðkÞ ¼ �ð�� � kÞ. For�1=2 ¼ �V=2,
the average current is then given by

hIi ¼
Z V=2

�V=2
dkI0ðkÞ þ 1

2

Z V=2

�V=2
dk

Z V=2

�V=2
dhIþðk; hÞ

þ
Z V=2

��
dk

Z �V=2

��
dhI�ðk; hÞ; (12)

where �� is the low-energy cutoff. We have

hIi¼ t2

4�
j�þ t2

8�2

4U

4þU2

�
J�U

2
J0
�
;

J¼2ð ��þjþÞj2þðj��j1Þlog
ð�2�þ1Þ2

ð�2þþ1Þð�2�þ1Þ;

J0 ¼2ð ��þjþÞj1þ
�
j2þ1

2
log

�2þþ1

�2�þ1

�
log

ð�2�þ1Þ2
ð�2þþ1Þð�2�þ1Þ;

(13)

where �� ¼ ð�d � V=2Þ=�t2, �� ¼ ð�d þ�Þ=�t2, �� ¼
2½�=�t2 � arctanð��Þ�, j� ¼ arctanð�þÞ � arctanð��Þ,
and js ¼ �2�sþ =ð�2þ þ 1Þ � �2�s� =ð�2� þ 1Þ, (s ¼ 1, 2).
The current includes higher-order terms in U and, at �d ¼
0, agrees with the perturbative result [20] in the first order
in U. The linear divergence in � ! 1 is due to the
linearized dispersion relation in Eq. (1). In Fig. 2, we
plot the current-voltage characteristics at �d ¼ 0 by setting
� ¼ V=2. The regime of negative differential conductance
appears for U > 2 [19,21].

In summary, we have studied the nonequilibrium current
in an open quantum dot system by using exact scattering

eigenstates. We have found that the interaction effect ap-
pears through the many-body bound states. By taking the
two-body bound state into account, we have calculated the
average current, which agrees with the perturbative result
[20] at �d ¼ 0 and has a behavior similar to the other
results [19,21]. In order to compare our result, including
the case �d � 0, with the result in Ref. [20] precisely, we
need to consider contributions from other many-body
bound states in Eq. (13). They would enable us to regular-
ize the logarithmic divergences in Eq. (13) with the RG
technique [19,26].
The authors would like to thank Dr. T. Fujii for discus-

sions. One of the authors (A. N.) also would like to thank
Professor T. Deguchi for helpful comments. The present
study is partially supported by Grant-in-Aid for Young
Scientists (B) No. 20740217, Grant-in-Aid for Scientific
Research (B) No. 17340115, and CREST, JST.

[1] D. C. Ralph and R.A. Buhrman, Phys. Rev. Lett. 69, 2118
(1992); Phys. Rev. Lett. 72, 3401 (1994).

[2] D. Goldhaber-Gordon et al., Nature (London) 391, 156
(1998).

[3] S.M. Cronenwett et al., Science 281, 540 (1998).
[4] W.G. van der Wiel et al., Science 289, 2105 (2000).
[5] J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).
[6] Y. Meir, N. S. Wingreen, and P.A. Lee, Phys. Rev. Lett.

66, 3048 (1991).
[7] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512

(1992).
[8] S. Hershfield, J. H. Davies, and J.W. Wilkins, Phys. Rev.

Lett. 67, 3720 (1991).
[9] A. L. Yeyati, A. Martin-Rodero, and F. Flores, Phys. Rev.

Lett. 71, 2991 (1993).
[10] T. Fujii and K. Ueda, Phys. Rev. B 68, 155310 (2003).
[11] N. Andrei, Phys. Rev. Lett. 45, 379 (1980).
[12] P. B. Wiegmann, Phys. Lett. A 80, 163 (1980).
[13] V.M. Filyov and P. B. Wiegmann, Phys. Lett. A 76, 283

(1980).
[14] R.M. Konik, H. Saleur, and A.W.W. Ludwig, Phys. Rev.

Lett. 87, 236801 (2001); Phys. Rev. B 66, 125304 (2002).
[15] A. V. Lebedev, G. B. Lesovik, and G. Blatter, Phys. Rev.

Lett. 100, 226805 (2008).
[16] A. Dhar, D. Sen, and D. Roy, Phys. Rev. Lett. 101, 066805

(2008).
[17] N. Kawakami and A. Okiji, Phys. Lett. A 86, 483 (1981);

J. Phys. Soc. Jpn. 51, 1145 (1982).
[18] P. Mehta and N. Andrei, Phys. Rev. Lett. 96, 216802

(2006).
[19] B. Doyon, Phys. Rev. Lett. 99, 076806 (2007).
[20] A. Golub, Phys. Rev. B 76, 193307 (2007).
[21] E. Boulat, H. Saleur, and P. Schmitteckert, Phys. Rev. Lett.

101, 140601 (2008).
[22] E. Boulat and H. Saleur, Phys. Rev. B 77, 033409 (2008).
[23] A. Nishino and N. Hatano, J. Phys. Soc. Jpn. 76, 063002

(2007).
[24] T. Imamura, A. Nishino, and N. Hatano report, 2009.
[25] J. T. Shen and S. Fan, Phys. Rev. Lett. 98, 153003 (2007).
[26] B. Doyon and N. Andrei, Phys. Rev. B 73, 245326 (2006).FIG. 2. A current-voltage characteristics of the average non-

equilibrium current for �d ¼ 0 and U ¼ 0, 1, 2, 3, 4, 5.

PRL 102, 146803 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

10 APRIL 2009

146803-4


