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We present a detailed study of the ground state and low-temperature properties of the integrable

Hubbard model with bond-charge interaction, including its conducting properties and scaling behavior

near the U-driven quantum phase transitions. Remarkably, the model displays fractional statistical

properties, which enlighten the nature of various physical properties, such as the fractional elementary

excitations, and give rise to a disordered condensate and phase separation in k space, as well as to a

topological change in the generalized Fermi surface at half filling.

DOI: 10.1103/PhysRevLett.102.146404 PACS numbers: 71.10.Fd, 05.30.Pr, 71.30.+h

Several variants of the Hubbard model with a hopping
amplitude t that depends on the presence of particles of
opposite spins on neighboring sites, i.e., models with cor-
related hopping or bond-charge interaction, in addition to
the on-site coupling U, have been proposed to account for
special features of materials and phenomena. In particular,
we mention polyacetylene [1], high-temperature supercon-
ductors [2], superconductivity [3–7], including other prop-
erties of quasi-one-dimensional systems, e.g., Bechgaard
salts [8,9], metallic ferromagnetism and metal-insulator
transition [7,10], and entanglement properties in quantum
information [11].

The simplest case one may consider is defined on a
linear chain of L sites [4–12]:

H x ¼ �t
X

hi;ji;�
½1� xðni �� þ nj ��Þ�cyi�cj�

þU
X
i

ni"ni# � h
X
i

ðni" � ni#Þ; (1)

where ci� (cyi�) are electron annihilation (creation) opera-

tors, ni� ¼ cyi�ci�, � ¼" , # , �� ¼ ��, h is the magnetic
field, and x is the bond-charge interaction parameter. De-
spite the integrability of the model at x ¼ 1 [4–7,9,11,12],
some relevant features still lack a proper description.

In this work, we undertake a detailed study of the ground
state (GS) and low-temperature (� ¼ 1=kBT) properties of
H x¼1, including its conducting properties and scaling
behavior near the U-driven quantum phase transitions in
the rich (U=t, n) phase diagram, where n is the particle
density. Remarkably, we show that H x¼1 displays frac-
tional statistical properties, which enlighten our under-
standing of this strongly correlated electron system, in
particular, of the underlying nature of various physical
properties, such as the elementary excitations, the disor-
dered condensate, the phase separation in k space, and the

predicted [5] exotic nonconducting line at n ¼ 1, for any
U, in spite of a vanishing charge gap.
Fractional exclusion statistics.—It has been noticed [9]

that the correlated hopping term allows to split the four
possible local states of the Hubbard model into two disjoint
sets: A ¼ fj"i; j#ig and B ¼ fj"#i; j0ig. By exploiting fun-
damental aspects of the Hilbert space in light of these
Sutherland species, it has been shown that the spectrum
[7,9] and the grand-partition function [9] read E ¼P

k"knk þUN"# � hðN" � N#Þ, k ¼ 2�m=Lðm ¼ �L=2þ
1; . . . ; L=2Þ, where nk ¼ 0, 1, "k ¼ �2t cosk,N" (N#) is the
number of electrons with spin " ( # ) at singly occupied
sites, N"# is the number of doubly occupied sites and N ¼
N" þ N# þ 2N"# is the total number of particles; Z ¼ ½1þ
e�ð2��UÞ�LQk½1þ e��ð"k���Þ�, where � is the chemical

potential and �� ¼ �þ 1
� ln½ 2 coshð�hÞ

1þe�ð2��UÞ� is the renormal-

ized chemical potential. Above, apart from the Zeeman
term, E is given by the spinless fermion contribution [7,9]
plus a Coulomb term with conserved N"#.
Surprisingly, we can show that the grand-canonical free

energy, �ð�;�; hÞ, reads

� ¼ � 1

�

X
k

lnð1þ e��"k;1 þ e��"k;2 þ e��"k;3Þ; (2)

where "k;1 ¼ "k � h��, "k;2 ¼ "k þ h��, and "k;3 ¼
U� 2�. Therefore, insofar as the thermodynamic proper-
ties are concerned, the H x¼1 model is mapped onto an
ideal gas of three species of exclusons, obeying fractional
exclusion statistics [13,14]. Their average occupation num-
ber hnk;�i, � ¼ 1, 2, 3, where hN"i �

P
khnk;1i, hN#i �P

khnk;2i, hN"#i � P
khnk;3i, are derived by solving the set

of equations hN"i þ hN#i þ 2hN"#i ¼ 1
�

@ lnZ
@� , hN"i � hN#i ¼

1
�

@ lnZ
@h , and hN"#i ¼ � 1

�
@ lnZ
@U . In fact, we find

hnk;�¼1;2i ¼ 1þ� tanhð�hÞ
2

hnki; (3)
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hnk;3i ¼ 1� hnki
e�ðU�2�Þ þ 1

; (4)

where hnki ¼ 1=½e�ð"k���Þ þ 1� ¼ hnk;1i þ hnk;2i is the re-
normalized Fermi distribution, in agreement with the spin-
less Fermi gas picture [4,7,9]. However, here the mapping
is clearly associated with the fractional character of the
species 1 and 2, as evidenced by the factor 1=2multiplying
the average occupation number per orbital, hnki. Besides,
the factor 1� hnki in Eq. (4) excludes the possibility of
simultaneous occupation in k space of species 3 and spe-
cies 1 or 2. A noticeable feature of the mapping is that the
statistical matrix is exactly the one found for the Hubbard
model with standard hopping and infinite-range interaction
[15,16]:

½g�kk0;��0 ¼ �kk0

1 1 1
0 1 1
0 0 1

0
@

1
A; (5)

although in that case the third fractional species displays
dispersive behavior: "k;3 ! 2"k þU� 2�. Further, we

can also show that (5) is the statistical matrix for a related
model with pair hopping [17], with "k;3 ! "k þU� 2�.

The proof of the mapping follows from the fact
that � can be written as � ¼ � 1

�

P
k;� lnð1þ w�1

k;�Þ,
where wk;� satisfy the Haldane-Wu distribution ð1þ
wk;�ÞQk0;�ð wk0 ;�

1þwk0 ;�
Þgk0k;�� ¼ e�"k;� , withwk;1 ¼ e�"k;1 ,wk;2 ¼

ð1þ wk;1Þe�ð"k;2�"k;1Þ, and wk;3 ¼ ð1þ wk;2Þe�ð"k;3�"k;2Þ.
We also verify that the fractional species hnk;�i satisfy

the exclusion relation [13,14] hnk;�iwk;� ¼ 1�P
k0;�gkk0;��hnk0;�i, where hnk;�i ¼ e��"k;�

1þP3
�¼1

e��"k;�
, in agree-

ment with Eqs. (3) and (4). In particular, the spectrum of
H x¼1 can be written in terms of the fractional elementary
excitations (FEE): E��N ¼ P

k;�"k;�hnk;�i.
Ground state and low-T properties.—In order to clarify

the zero-field GS phases of the model, it will prove very
helpful to examine the dependence of the FEE properties
onU and n (the scaling properties of the transitions shall be
examined below). For U <�4t ( � Uc1), the system is a
disordered Mott insulator, with E=L ¼ Un=2, � ¼ U=2,
and charge gap �þ ��� � �1 ¼ Uc1 �U [7], despite

the nonzero �-pairing correlation limji�jj!1h�y
i �ji ¼

ðhN"#i=LÞ2, where � ¼ P
jcj#cj", [4–7]. Further, as shown

in Fig. 1(a) for U ¼ �6t and n ¼ 1, the gap �1=2 ¼ t
separates the disordered condensate of exclusons 3, defined
by the flat energy level "k;3 ¼ ðU� 2�Þ�¼U=2 ¼ 0 and

hnk;3i ¼ n=2, 8 k, from the bottom of the empty degener-

ate dispersive bands of exclusons 1 and 2 "k;1 ¼ "k;2 ¼
"k �U=2. In fact,�1 is the excitation energy, at fixedN, of
the elementary process: excluson 3 ! excluson 1þ
excluson 2. We also emphasize that, due to the fractional
occupation of species 1 and 2 [see Eq. (3)], the twofold
spin degenerate dispersive bands are equivalent to a single
band of spinless fermions. In the disordered conden-
sate, static ("#)-pairs and holes are randomly distributed,
both in direct and reciprocal spaces, with entropy S ¼
�ð@F=@TÞN;T¼0 ¼ kB ln½L!=hN"#i!ðL� hN"#iÞ!�, where

F ¼ �N þ� is the Helmholtz free energy and � ’ U
2 þ

kBT
2 lnð n

2�nÞ. Further, the charge compressibility is singular

	�1 ¼ @2ðE=LÞ=@n2 ¼ 0 (adding exclusons 3 costs no
energy). In this phase, thermal excitation of exclusons 3
dominates several low-T responses. In particular, it is
worth mentioning that the canonical specific heat, C ¼
Tð@S=@TÞN , reads

C

L
’ kB�

2
1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2� nÞ
�tðkBTÞ3

s
exp

�
� �1

2kBT

�
: (6)

For U > 4t and n ¼ 1 the system is a Mott insulator and
a plot of the FEE with a gap �2=2 ¼ ðU� 4tÞ=2 (¼t) is
shown in Fig. 1(b), where species 1 and 2 fill the band of
spinless fermions. It is interesting to notice that the specific

heat inside the Mott phase [9] C
L ’ kB�

2
2

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�tðkBTÞ3

p expð� �2

2kBT
Þ,

is obtained from Eq. (6) by setting n ¼ 1 and replacing
U ! �U.
For Uc1 <U<�4t cosðn�Þ (�Uc2), the system is me-

tallic, although at n ¼ 1 the net dc current is zero [5]. In
any case, by eliminating � in favor of �ðn; TÞ, the three
fractional species coexist in equilibrium with GS entropy,
due to spin degeneracy and disorder, given by
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FIG. 1 (color online). Fractional elementary excitations at n ¼ 1, h ¼ 0, and t � 1. (a) Disordered condensate at "k;3 ¼ 0 and
U ¼ �6; the empty degenerate band of exclusons 1 and 2 are shown above the gap �1=2 ¼ 1. (b) Mott insulator phase for U ¼ 6; a
gap �2=2 ¼ 1 splits the full effective spinless band from the empty flat level "k;3 ¼ 0. (c) Metallic phase for U ¼ 1, characterized by

the coexistence of the three fractional species; at n ¼ 1 the net dc current is zero [5].
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S ¼ �
�
@F

@T

�
N;T¼0

¼ kB ln

�
2ðhN"iþhN#iÞLeff!

hN"#i!ðLeff � hN"#iÞ!
�
; (7)

where Leff ¼ L� ðhN"i þ hN#iÞ, valid in all phases. The

total energy per site is E
L ¼ � 2t

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðU=4tÞ2p þ U

2 �
½n� 1

� arccosð�U=4tÞ� [7], and� ¼ U=2 as in the former

case. A plot of the FEE is shown in Fig. 1(c) for U ¼ t and
n ¼ 1; we stress that 	�1 ¼ 0 is the signature of the phase
separation in k space. In fact, as clearly shown in Fig. 1(c),
species 1 and 2 are restricted to the interval [�kF1, kF1]
where kF1 ¼ �ðhN"i þ hN#iÞ=L, whereas the disordered

flat level of exclusons 3 is confined to k vectors of the
complementary set ð��;�kF1Þ [ ðkF1; ��. Moreover, for
U >Uc2 and n < 1 (the case n > 1 is obtained by particle-
hole symmetry), the GS remains metallic with 	�1 � 0
since species 3 is absent, the spinless band is partially filled
and the system is well described by the infinite-U Hubbard
chain [4].

Topology of the generalized Fermi surface.—In Ref. [5],
it was shown that the GS Drude weight Dc at n ¼ 1
is exactly zero, notwithstanding the absence of charge
gap for �4t < U < 4t. In fact, we can decompose the cur-
rent density Jx¼1¼�ð@H x¼1=@
Þ
¼0 [after the Peierls

transformation cj�!e�ij
cj� in (1)] into two com-

ponents: Jx¼1 ¼ it
P

j;�fð1 � 2nj ��Þð1 � nj �� � njþ1 ��Þ �
cyjþ1�cj� � ð1 � 2njþ1 ��Þð1 � nj �� � njþ1 ��Þcyj�cjþ1�g þ
2it

P
j;�nj ��njþ1 ��ðcyj�cjþ1� � cyjþ1�cj�Þ � JS þ JD. JS is

associated with the transport of exclusons 1 and 2 only and
mapped onto the current density of the spinless Fermi gas,
while excluson 3 is transported by JD in opposite direction
to JS, thus nullifying the net effect at n ¼ 1. This confirms
that the vanishing behavior of Dc � ðn� 1Þ2 (�4t < U <
4t, n ! 1) [5] does not signal a standard density-driven
metal-insulator transition (MIT) [18], once we also verify
that F is analytic and obeys a Sommerfeld-like expansion
in the vicinity of n ¼ 1. However, we must conciliate the
above results with the FEE plot shown in Fig. 1(c).

Following Ref. [19], we make use of concepts of general-
ized Fermi surface and Luttinger theorem proposed for
electronic systems exhibiting non-Fermi liquid behavior,
including fractionalization effect on the average particle
number, i.e., hnk�i< 1 at T ¼ 0. The Fermi surface of
H x¼1 is defined by the k vectors that mark singularities
at T ¼ 0 in hnk"i � hnk;1i þ hnk;3i and hnk#i � hnk;2i þ
hnk;3i (in our case, step discontinuities). Figure 2(a) shows

hnk�i for U ¼ t and n ¼ 3=4, where the Fermi surface is
given by the k set f��;�kF1g. The indices [19] character-
izing the singularities read

��1 ¼ lim
�!0þ

½hnkF1��;�i � hnkF1þ�;�i� ¼ �ð1� nÞ
2ð�� kF1Þ ;

��2 ¼ lim
�!0þ

hn���;�i ¼ n�� kF1
2ð�� kF1Þ ; (8)

which depend on n and U. Further, in terms of the Fermi
surface topology, the total number of particles of spin � is
given by the generalized Luttinger theorem [19]:

2�Nð�Þ
L

¼
Z �

��
hnk�idk ¼ 2½ð��1ÞkF1 þ ð��2Þ��: (9)

However, once ��1 ¼ 0 and ��2 ¼ 1=2 at n ¼ 1, the
Fermi surface undergoes a topological change since it is
now reduced to the vectors k ¼ �� with hnk"i ¼ hnk#i ¼
1=2, 8 k. Thus, on average, there is one carrier per or-
bital k and the system is nonconducting. We can also

predict that Dc is zero for any T. In fact, hnk"i ¼ hnk#i ¼
e��ð"k��Þþe��ðU�2�Þ

1þ2e��ð"k��Þþe��ðU�2�Þ ¼ 1
2 , 8 k, since at half filling and T >

0, � ¼ U=2 exactly.
Scaling properties.—We now provide a scaling analysis

of the U-driven quantum phase transitions exhibited by
H x¼1. In the vicinity of a quantum critical point (QCP),
the singular part of F, FsingðT; h;U�UcÞ, can be written

[18] either as Fsing ¼ jU�Ucj2��FUð T
jU�Ucj�z ;

h
jU�Ucj�þ�Þ

or as Fsing ¼ T1þðd=zÞFTðjU�Ucj
T1=ð�zÞ ;

h
TÞ if kBT dominates the

energy scale, where FU,FT are scaling functions, and�,�,
�, �, z are critical exponents satisfying the relations �z ¼
�þ � and 2� � ¼ �ðdþ zÞ.
In Fig. 2(b), the various phases of H x¼1 are depicted.

The line U ¼ Uc1 is the quantum critical line of the
U-driven MIT, which is attained by letting �1 ! 0þ in

Fig. 1(a) at fixed n, with order parameter mUc1
¼

ðhN"iþhN#iÞT¼0

L . In the metallic side and h ¼ 0, we find Fsing ¼
� ðU�Uc1Þ3=2ffiffi

t
p FUc1

ðxÞ, x ¼ kBT=ðU�Uc1Þ, which implies

the critical exponents of the QCP of the spinless Fermi
gas in d ¼ 1 [18] � ¼ � ¼ � ¼ � ¼ 1=2 and z ¼ � ¼ 2
(see below). The exponent z ¼ 2 is confirmed by notic-
ing that Fsing is dominated by gapless excitations a

round the bottom of the dispersive band of exclusons 1
and 2: "k;�¼1;2 ¼ ð"k �U=2ÞU¼Uc1

’ tk2 � kz. Further,

the GS critical behavior of the order parameter

k
F1

k
F2

= π
k

0

0.5

1

<
n kσ

>

0.5 1 1.5
n

-8

-4

0

4

8

U

U
c1

U
c2

QCP
(b)

 ∆ν1

U = t

∆ν2

(a) I

I

FIG. 2 (color online). (a) Fractional average number of elec-
trons of spin � ¼" , # at n ¼ 3=4 and U ¼ t, displaying step
singularity at the wave vector kF1. (b) GS phase diagram in h ¼
0 and t � 1. Capital letters I denote insulating phases, otherwise
the GS is metallic. However, at n ¼ 1, Dc ¼ 0 (dotted line).
Line Uc1 and the QCP are associated with MIT, while Uc2

separates distinct metallic phases.
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reads mUc1
ðh ¼ 0;U�Uc1Þ ’ 1

� ðU�Uc1

t Þ1=2, U ! Uþ
c1;

mUc1
ðh;U ¼ Uc1Þ ’ 1

� ðhtÞ1=2. It is also worth mentioning

that the QCP of the MIT attained by letting �2 ! 0þ at

fixed n ¼ 1 in Fig. 1(b), and order parameter mQCP ¼
hN"#iT¼0

L , is also in the same universality class of the quantum

critical line U ¼ Uc1. On the other hand, when kBT domi-
nates the energy scale, the quantum critical behavior of the

specific heat along the line U ¼ Uc1 reads C
L ’ 3kB

2� �
ðkBTt Þ1=2

Rþ1
0 ln½1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nð2� nÞp
e�x2�dx� Td=z. Further,

the above expression is also valid for the QCP at U ¼ 4t
by setting n ¼ 1.

The quantum critical line U ¼ Uc2 separates distinct

metallic phases with order parameter mUc2
¼ hN"#iT¼0

L . By

assuming that Uc2 �U > 0, the scaling part of F can be

found by a Sommerfeld-like expansion Fsing ¼
� ðUc2�UÞ2

t FUc2
ðxÞ, x ¼ ½kBT=ðUc2 �UÞ� ln½ðUc2 �UÞ=t�,

h ¼ 0, which implies � ¼ � ¼ 0 and � ¼ � ¼ z ¼ � ¼
1 (see below), with logarithmic corrections consistent with
d ¼ z (¼1) [18]. In contrast with the previous case, Fsing is

dominated by gapless excitations around k ¼ kF1 ¼
�ðhN"i þ hN#iÞU¼Uc2

=L ¼ n� in the dispersive band of

exclusons 1 and 2: "k;�¼1;2 ¼ ð"k �U=2ÞU¼Uc2
’

ð2t sinn�Þðk� n�Þ � ðk� n�Þz. The GS critical behavior

of mUc2
reads mUc2

ðhUc2
¼ 0;U�Uc2Þ ’ Uc2�U

8�t sinðn�Þ , U !
U�

c2; mUc2
ðhUc2

;U ¼ Uc2Þ ’ hUc2
8�t sinðn�Þ , hUc2

! 0þ, where
hUc2

is the scaling field coupled to mUc2
through the term

�hUc2

P
ini"ni# added to H x¼1. In addition, the quantum

critical behavior of the specific heat along the critical line

U ¼ Uc2 reads
C
L ’ k2BT

8�t sinðn�Þ ln
2ðkBTt Þ � Td=z.

Finally, the scaling prediction L�1ð@S=@UÞN � jUc �
Uj1����z, which manifests itself as [’ kB ln½nð2�nÞ�

4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tðU�Uc1Þ

p , U !
Uþ

c1] and [’ kB
8�t sinðn�Þ lnðUc2�U

t Þ,U ! U�
c2], is in agreement

with both the power law and logarithmic singularities
derived in the framework of quantum-information theory
[11]. Noticeably, the amplitude of L�1ð@S=@UÞN , U !
Uþ

c1 vanishes at n ¼ 1, consistent with the U-independent
entropy at n ¼ 1: S ¼ kBN ln2.

In conclusion, we reported on a quite complete study of
the GS and low-T properties of the integrable Hubbard
model with bond-charge interaction. In particular, we an-
alyzed its conducting properties and presented a detailed
description of the scaling behavior near a quantum phase
transition between two distinct metallic phases, with quan-
tum dynamic exponent z ¼ 1, and near both a QCP and a
quantum critical line of MIT, with z ¼ 2. Remarkably, the
model exhibits fractional statistical properties, which are
manifest in the nature of the fractional elementary excita-
tions, with nontrivial implications. Notably, we mention
the disordered condensate, the phase separation in k space,
and the topological change in the generalized Fermi sur-
face at half filling.
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