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We present a detailed study of the ground state and low-temperature properties of the integrable
Hubbard model with bond-charge interaction, including its conducting properties and scaling behavior
near the U-driven quantum phase transitions. Remarkably, the model displays fractional statistical
properties, which enlighten the nature of various physical properties, such as the fractional elementary
excitations, and give rise to a disordered condensate and phase separation in k space, as well as to a
topological change in the generalized Fermi surface at half filling.
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Several variants of the Hubbard model with a hopping
amplitude ¢ that depends on the presence of particles of
opposite spins on neighboring sites, i.e., models with cor-
related hopping or bond-charge interaction, in addition to
the on-site coupling U, have been proposed to account for
special features of materials and phenomena. In particular,
we mention polyacetylene [1], high-temperature supercon-
ductors [2], superconductivity [3—7], including other prop-
erties of quasi-one-dimensional systems, e.g., Bechgaard
salts [8,9], metallic ferromagnetism and metal-insulator
transition [7,10], and entanglement properties in quantum
information [11].

The simplest case one may consider is defined on a
linear chain of L sites [4—12]:

H, =t Z [1— x(n;s + nj&)]c;r”cjg
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where c¢;,, (C,Tg) are electron annihilation (creation) opera-
tors, n;, = c;rgc,-{,, o=1,l, 0 = —o, his the magnetic
field, and x is the bond-charge interaction parameter. De-
spite the integrability of the model at x = 1 [4-7.,9,11,12],
some relevant features still lack a proper description.

In this work, we undertake a detailed study of the ground
state (GS) and low-temperature (8 = 1/kgT) properties of
H ,_,, including its conducting properties and scaling
behavior near the U-driven quantum phase transitions in
the rich (U/t, n) phase diagram, where n is the particle
density. Remarkably, we show that {,_, displays frac-
tional statistical properties, which enlighten our under-
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predicted [5] exotic nonconducting line at n = 1, for any
U, in spite of a vanishing charge gap.

Fractional exclusion statistics.—It has been noticed [9]
that the correlated hopping term allows to split the four
possible local states of the Hubbard model into two disjoint
sets: A = {|1), |)} and B = {|1l), |0)}. By exploiting fun-
damental aspects of the Hilbert space in light of these
Sutherland species, it has been shown that the spectrum
[7,9] and the grand-partition function [9] read E =
Sieny + UNy — h(Ny — N)), k = 2mm/L(m = —L/2+
l,...,L/2),where n, = 0,1, g, = —2tcosk, N; (N)) is the
number of electrons with spin T (] ) at singly occupied
sites, Ny is the number of doubly occupied sites and N =
N; + N| + 2Ny is the total number of particles; Z = [1 +
ePCE=UTTIL + e Pe=#)]) where w is the chemical

2 cosh(Bh)
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ized chemical potential. Above, apart from the Zeeman
term, E is given by the spinless fermion contribution [7,9]
plus a Coulomb term with conserved Ny.

Surprisingly, we can show that the grand-canonical free
energy, (B, w, h), reads

potential and u* = u + é In[ ] is the renormal-

1
Q= —EZIn(l + e Pent 4 emBeir + o7BE) (2)
k

where Ep1 = & — h — My Ern = & +h— M, and &3 =
U — 2. Therefore, insofar as the thermodynamic proper-
ties are concerned, the F ,_; model is mapped onto an
ideal gas of three species of exclusons, obeying fractional
exclusion statistics [13,14]. Their average occupation num-
ber (n;,), @ =1, 2, 3, where (N;) = X (n;1), (N) =
> nga), (Ny) = 3 (ny3), are derived by solving the set

of equations (Ny) + (N}) + 2(Ny) = % %, (Np) — (N =

stanfiing of this strongly 'correlated electrqn system, in 1 ag;lz, and (Ny) = — 1 % In fact, we find

particular, of the underlying nature of various physical — # B .

properties, such as the elementary excitations, the disor- (n y = 17 tanh(h) (n,) 3)
dered condensate, the phase separation in k space, and the ka=l2 2 o
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where (n;) = 1/[ePE 1) + 1] = (ny ;) + (ny.,) is the re-
normalized Fermi distribution, in agreement with the spin-
less Fermi gas picture [4,7,9]. However, here the mapping
is clearly associated with the fractional character of the
species 1 and 2, as evidenced by the factor 1/2 multiplying
the average occupation number per orbital, (n;). Besides,
the factor 1 — (n;) in Eq. (4) excludes the possibility of
simultaneous occupation in k space of species 3 and spe-
cies 1 or 2. A noticeable feature of the mapping is that the
statistical matrix is exactly the one found for the Hubbard
model with standard hopping and infinite-range interaction

[15,16]:

although in that case the third fractional species displays
dispersive behavior: g3 — 2g; + U — 2u. Further, we
can also show that (5) is the statistical matrix for a related
model with pair hopping [17], with ;3 — &, + U — 2pu.

The proof of the mapping follows from the fact
that ) can be written as Q) = — %Zkﬂ In(1 + wi}b),

where w; , satisfy the Haldane-Wu distribution (1 +
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wk,ﬂf)l_lk/,/\(]+wk,A)gl\lk')m = e:B k’”,Wlth Wk,l = eﬁ k’l’ Wk,z =

(l + wk’l)eﬁ(skz*sk,l), and W3 = (1 + Wk’z)eﬁ(s“*sk’z).
We also verify that the fractional species (n;,) satisfy
the exclusion relation [13,14] (ng)wi, =1—

i a8kk:arni ), Where (ny o) = ¢ Pk in agree-

ment with Egs. (3) and (4). In particular, the spectrum of
H ,_, can be written in terms of the fractional elementary
excitations (FEE): E — uN = Y, &1 a{nj o)

Ground state and low-T properties.—In order to clarify
the zero-field GS phases of the model, it will prove very
helpful to examine the dependence of the FEE properties
on U and n (the scaling properties of the transitions shall be
examined below). For U < —4¢ ( = U,,), the system is a
disordered Mott insulator, with E/L = Un/2, u = U/2,
and charge gap u. —u_ =A, = U, — U [7], despite

the nonzero m-pairing correlation lim_ j|_,oo<77;r n;) =
((Ny)/L)?, where n = >.;cjicjt» [4=T]. Further, as shown
in Fig. 1(a) for U = —6¢ and n = 1, the gap A,/2 =1
separates the disordered condensate of exclusons 3, defined
by the flat energy level g3 = (U —2u), -y, = 0 and
(ni3) = n/2, V k, from the bottom of the empty degener-
ate dispersive bands of exclusons 1 and 2 g, = g, =
g, — U/2.Infact, A, is the excitation energy, at fixed N, of
the elementary process: excluson 3 — excluson 1 +
excluson 2. We also emphasize that, due to the fractional
occupation of species 1 and 2 [see Eq. (3)], the twofold
spin degenerate dispersive bands are equivalent to a single
band of spinless fermions. In the disordered conden-
sate, static (1])-pairs and holes are randomly distributed,
both in direct and reciprocal spaces, with entropy § =
—(dF/0T)yr—0 = kg In[L!/{NyDIL — (Ny)!],  where
F = uN + Q is the Helmholtz free energy and u = % +
"‘-“TT In(z%). Further, the charge compressibility is singular
k' =0%(E/L)/dn*> = 0 (adding exclusons 3 costs no
energy). In this phase, thermal excitation of exclusons 3
dominates several low-7 responses. In particular, it is
worth mentioning that the canonical specific heat, C =
T(3S/0T)y, reads

kgA? [n(2 —n) ( A )
— = €X - .
8 \7ilky7) P\ 24,7

For U > 4t and n = 1 the system is a Mott insulator and
a plot of the FEE with a gap A,/2 = (U — 41)/2 (=1) is
shown in Fig. 1(b), where species 1 and 2 fill the band of
spinless fermions. It is interesting to notice that the specific

2
heat inside the Mott phase [9] £ = s\/% exp(— Zfﬁ),
is obtained from Eq. (6) by setting n = 1 and replacing
U— —U.

For U,, < U < —4tcos(nm) (=U,,), the system is me-
tallic, although at n = 1 the net dc current is zero [5]. In
any case, by eliminating w in favor of w(n, T), the three
fractional species coexist in equilibrium with GS entropy,
due to spin degeneracy and disorder, given by

C
7= (©)

2t
4 U= 0 o U=1
Ay/2 &3 .
€1 = 2 | 2 0
o I €,1=¢ €k,3 =
1A/2 4 k1~ k2 €1 = &
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FIG. 1 (color online).

Fractional elementary excitations at n = 1, h =0, and ¢ = 1. (a) Disordered condensate at ;3 = 0 and

U = —6; the empty degenerate band of exclusons 1 and 2 are shown above the gap A;/2 = 1. (b) Mott insulator phase for U = 6; a
gap A,/2 = 1 splits the full effective spinless band from the empty flat level g, 3 = 0. (¢) Metallic phase for U = 1, characterized by
the coexistence of the three fractional species; at n = 1 the net dc current is zero [5].
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where L.y = L — ((N;) + (N})), valid in all phases. The
total energy per site is £= —2\1 - (U/41)* +¥§ X
[n — L arccos(—U/41)][7], and u = U/2 as in the former
case. A plot of the FEE is shown in Fig. 1(c) for U = t and
n = 1; we stress that k! = 0 is the signature of the phase
separation in k space. In fact, as clearly shown in Fig. 1(c),
species 1 and 2 are restricted to the interval [—kg;, kp]
where kp; = w((N;) + (N))/L, whereas the disordered
flat level of exclusons 3 is confined to k vectors of the
complementary set (—, —kp;) U (kp;, 7]. Moreover, for
U > U, and n <1 (the case n > 1 is obtained by particle-
hole symmetry), the GS remains metallic with k! # 0
since species 3 is absent, the spinless band is partially filled
and the system is well described by the infinite-U Hubbard
chain [4].

Topology of the generalized Fermi surface.—In Ref. [5],
it was shown that the GS Drude weight D, at n =1
is exactly zero, notwithstanding the absence of charge
gap for —4¢ < U < 4¢. In fact, we can decompose the cur-
rent density J,_; = —(0H ,_;/dp)4—o lafter the Peierls
transformation c¢;,—e “%c;, in (1)] into two com-
ponents: J,—; = it}; (1 — 2n;5)(1 — njz — njy15) X
C;rﬂgcja -1 - 2”j+15—)(1 - Njg — j+1fr)C;r(,Cj+1a} +
2itzj’0nj(—,nj+m(c}i,c#1,, - ;rﬂg Cig) = Js + Jp. Jgis
associated with the transport of exclusons 1 and 2 only and
mapped onto the current density of the spinless Fermi gas,
while excluson 3 is transported by Jp, in opposite direction
to Jg, thus nullifying the net effect at n = 1. This confirms
that the vanishing behavior of D, ~ (n — 1)> (4t < U <
4t, n — 1) [5] does not signal a standard density-driven
metal-insulator transition (MIT) [18], once we also verify
that F is analytic and obeys a Sommerfeld-like expansion
in the vicinity of n = 1. However, we must conciliate the
above results with the FEE plot shown in Fig. 1(c).
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FIG. 2 (color online). (a) Fractional average number of elec-
trons of spin o =1, | at n = 3/4 and U = 1, displaying step
singularity at the wave vector k. (b) GS phase diagram in h =
0 and ¢t = 1. Capital letters I denote insulating phases, otherwise
the GS is metallic. However, at n = 1, D, = 0 (dotted line).
Line U, and the QCP are associated with MIT, while U,
separates distinct metallic phases.

Following Ref. [19], we make use of concepts of general-
ized Fermi surface and Luttinger theorem proposed for
electronic systems exhibiting non-Fermi liquid behavior,
including fractionalization effect on the average particle
number, i.e., {(n;,) <1 at T = 0. The Fermi surface of
H ., is defined by the k vectors that mark singularities
at T=0 in (ny) = (ng) + (n3) and (ng) = (o) +
(n;3) (in our case, step discontinuities). Figure 2(a) shows
(ny,y for U = t and n = 3/4, where the Fermi surface is
given by the k set {=7, *kp,}. The indices [19] character-
izing the singularities read

L B _ w(l—n)
Avl - 7711{51+[<nkﬂ—17,0> <nkF1+17,o'>] - 2(77_ — kFl),
. nm — kg
Av, = lim{(n,_,,)=——, 8
2 1]—>0+< 17‘ > 2(77 - kFl) ( )

which depend on n and U. Further, in terms of the Fermi
surface topology, the total number of particles of spin o is
given by the generalized Luttinger theorem [19]:

27TN(0')

j (ngo)dk = 2(Av kg, + (Avy)al. )

However, once Av; =0 and Ay, = 1/2 at n =1, the
Fermi surface undergoes a topological change since it is
now reduced to the vectors k = *ar with (n) = (ny) =
1/2, V k. Thus, on average, there is one carrier per or-
bital k and the system is nonconducting. We can also

predict that D, is zero for any 7. In fact, (ny) = (ny) =
V k, since at half filling and T >

A S A R |
1+2e Bleg—w) 4 o= BU—24) 2°
0, u = U/2 exactly.

Scaling properties.—We now provide a scaling analysis
of the U-driven quantum phase transitions exhibited by
JH ,_,. In the vicinity of a quantum critical point (QCP),
the singular part of F, Fg,(T, h; U — U,), can be written

[18] either as Fg,, = |U — U, |2 _“FU(lU T =0 |/M)

or as Fyg, = T'H@/AIF (lU]/(f])l, 4) if kzT dominates the
energy scale, where Fy, F'r are scaling functions, and «, £3,
v, v, z are critical exponents satisfying the relations vz =
B+vand2— a=v(d+ z).

In Fig. 2(b), the various phases of J{ ,_, are depicted.
The line U = U,; is the quantum critical line of the
U-driven MIT, which is attained by letting A} — 0% in
Fig. 1(a) at fixed n, with order parameter my; =

%. In the metallic side and & = 0, we find F,, =

—(UﬁU?ﬂFUd (x), x =kgT/(U — U,;), which implies
the critical exponents of the QCP of the spinless Fermi
gasind=1[18]la=B=y=v=1/2andz=6=2
(see below). The exponent z = 2 is confirmed by notic-
ing that Fg,, is dominated by gapless excitations a
round the bottom of the dispersive band of exclusons 1
and 2 &;,-15 = (&¢ — U/2)y—y,, = tk* ~ k*. Further,
the GS critical behavior of the order parameter
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reads my (h=0;U—U.,) =L(E)V2 U —Uf;
my, (h; U = U, ) =L(®)2 1t is also worth mentioning
that the QCP of the MIT attained by letting A, — 0% at

fixed n =1 in Fig. 1(b), and order parameter mgcp =

%, is also in the same universality class of the quantum

critical line U = U_,. On the other hand, when kT domi-
nates the energy scale, the quantum critical behavior of the

specific heat along the line U = U, reads %:% X

(#)1/2 o[l +y/n(2 —n e ]dx ~ T%*.  Further,
the above expression is also valid for the QCP at U = 4«
by setting n = 1.

The quantum critical line U = U, separates distinct
metallic phases with order parameter my , = % By
assuming that U,, — U > 0, the scaling part of F can be
found by a Sommerfeld-like expansion Fg,, =
—Warll py (x), x = [kgT/(Up = U)IIn[(Uy = U)/1],
h = 0, which implies «a = y=0and B=v=z=0 =
1 (see below), with logarithmic corrections consistent with
d = z (=1) [18]. In contrast with the previous case, F,, is
dominated by gapless excitations around k = kp; =
w((Ny) + (N))y=y,,/L = nm in the dispersive band of
exclusons 1 and 20 & ,-1, = (g = U/2)y—y, =
(2tsinnr)(k — nm) ~ (k — nr)?. The GS critical behavior
of my , reads my ,(hy, = 0;U — Up,) = ol —

87t sin(nr) ?

_ hy.
U62; mUcz(hUcz; U= Ucz) = 87Tts[i]r(1?n77) >
hy,, s the scaling field coupled to my , through the term
—hy,>.nan; added to H —,. In addition, the quantum
critical behavior of the specific heat along the critical line

AT knT
U= UC2 reads % = mlnz(’%) ~ Td/z.

Finally, the scaling prediction L™ 1(9S/0U)y ~ |U, —
U|'=@=7%_ which manifests itself as [~ XeMrC-n] 77 _,

da\J2(U-U,)
U}land [= Smfiﬁ(m) 1n(U‘2t_U), U — U], is in agreement
with both the power law and logarithmic singularities
derived in the framework of quantum-information theory
[11]. Noticeably, the amplitude of L~'(3S/dU)y, U —
U}, vanishes at n = 1, consistent with the U-independent
entropy at n = 1: S = kzpN In2.

In conclusion, we reported on a quite complete study of
the GS and low-T properties of the integrable Hubbard
model with bond-charge interaction. In particular, we an-
alyzed its conducting properties and presented a detailed
description of the scaling behavior near a quantum phase
transition between two distinct metallic phases, with quan-
tum dynamic exponent z = 1, and near both a QCP and a
quantum critical line of MIT, with z = 2. Remarkably, the
model exhibits fractional statistical properties, which are
manifest in the nature of the fractional elementary excita-
tions, with nontrivial implications. Notably, we mention
the disordered condensate, the phase separation in k space,
and the topological change in the generalized Fermi sur-
face at half filling.

hy, — 0", where
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