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Mixing two types of glass formers in ion conducting glasses can be exploited to lower conductivity

activation energy and thereby increasing the ionic conductivity, a phenomenon known as the mixed glass

former effect (MGFE). We develop a model for this MGFE, where activation barriers for individual ion

jumps get lowered in inhomogeneous environments containing both types of network forming units. Fits

of the model to experimental data allow one to estimate the strength of the barrier reduction, and they

indicate a spatial clustering of the two types of network formers. The model predicts a time-temperature

superposition of conductivity spectra onto a common master curve independent of the mixing ratio.

DOI: 10.1103/PhysRevLett.102.145902 PACS numbers: 66.30.Dn

Ion conducting glasses are attractive electrolyte materi-
als since their composition can be varied to a large extent
and hence adapted to specific needs. They can be used in
many devices, such as, batteries, electrochromic windows,
chemical sensors, and supercapacitors. High ionic conduc-
tivities are needed for optimizing glassy electrolytes in
these applications and it is important to find methods for
enhancing them in a systematic way.

One method for increasing the ionic conductivity is the
mixing of different types of glass formers. Considering a
glass of general composition yM2X þ ð1� yÞ½ð1� xÞAþ
xB� with two network formers A, B and an alkali modifier
M2X (where X is O or S) with fixed mole fraction y, the
activation energy E�ðxÞ of the dc conductivity �dcðxÞ often
passes through a minimum as a function of the mixing ratio
x, causing a pronounced maximum in the conductivity.
This phenomenon is commonly referred to as the ‘‘mixed
glass former effect’’ (MGFE) [1]. The MGFE has been
found in various glass systems, e.g., SiO2-B2O3 [2],
P2O5-B2O3 [3,4], GeS2-SiS2 [5], P2O5-TeO2 [6],
TeO2-B2O3 [7], MoO3-TeO2 [8], and GeO2-GeS2 [9]
mixed glass former systems.

Different from the prominent mixed alkali effect [10],
the MGFE appears to be less universal. For example, in
borosilicates it has been argued that it occurs only in
rapidly quenched glasses with high concentration of mo-
bile ions [11] and in the P2O5-TeO2 system more than one
minimum in the activation energy has been observed [6].
With respect to a classification of different systems, we
distinguish a situation I, where, upon varying x, the local
geometry of the units of each of the network formers
remains the same (as, e.g., in the GeO2-GeS2 system
with tetrahedral units) from a situation II, where the coor-
dination number of elementary units of a network former
changes (e.g., in borophosphates, the ratio of tetrahedral
BO4 to trigonal BO3 units).

Because of the mixing of glass formers, the free-energy
landscape for the ion migration changes and in general

both the energy levels for the residence sites of the mobile
ions and the saddle point energies for ion jumps between
neighboring sites are affected. In situation II, one can
expect that the dominant effect is associated with a change
of the site energies, since different local geometries of the
network forming units (NFU) are associated with strong
variations in the spatial counter-charge distribution. In
situation I, in contrast, it can be expected that the dominant
effect is associated with reduced barrier energies along
jump paths with heterogeneous local environments (i.e.,
containing different glass forming units) compared to those
with homogeneous local environments.
In this Letter, we concentrate on situation I, where a

basic modeling should have at least two components: A
measure for the strength of the barrier reduction and a
prescription of how the fraction of homogeneous to het-
erogeneous environments and their spatial distribution
changes with the mixing ratio x. Based on these minimal
ingredients we develop a ‘‘mixed barrier model’’ (MBM)
and show that a simple realization of this model allows one
to fit experimental data and to give an estimate of the
strength of the barrier reduction effect. This strength turns
out to be only weakly affected by spatial clustering of the
two types of network formers. As a universal feature
independent of specific model implementations, the
MBM predicts a scaling of the ac conductivity with respect
to both temperature and mixing ratio x.
The MBM can be considered as a variant of the random

barrier model (RBM) [12] with a distribution of activation
barriers changing with x. The mobile ions in the glassy
network (or mobile charge carriers [13]) perform thermally
activated jumps between neighboring sites with rate
� expð�Ei=kBTÞ, where � is an attempt frequency
(�1012 Hz) and Ei a microscopic energy barrier, whose
mean value is different for different environments of the
surrounding NFU. For simplicity we distinguish between a
homogeneous environment (A or B), where the surround-
ing units are all of the same type and a mixed environment
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(AB), where both types of units are present. For each of
these environments we introduce a smooth distribution
c �ðEÞ of barriers (� ¼ A, AB, B), with c AB having a
lower mean than c A and c B to account for reduced barrier
energies in heterogeneous environments [14]. If the envi-
ronments occur randomly along the migration path (subset
of all possible transitions) with probabilities p�ðxÞ, the
activation energy E�ðxÞ can be calculated from the critical

path analysis of percolation theory [15]:
RE�

0 dEc ðE; xÞ ¼
pc, where c ðE; xÞ ¼ P

�p�ðxÞc �ðEÞ, and pc is the perco-
lation threshold for the occurrence of a connected path of
transitions through the system.

Choosing box distributions with support 0 � E � E�

with EAB < EA � EB, only the E� are needed for parame-
terization, and we obtain (a) for E�ðxÞ � EAB � EA

E�ðxÞ ¼ pc

pAðxÞE�1
A þ pBðxÞE�1

B þ pABðxÞE�1
AB

; (1)

while (b) E�ðxÞ¼ ½pc�pABðxÞ�½pAðxÞE�1
A þpBðxÞE�1

B ��1

for EAB�EaðxÞ�EA, and (c) E�ðxÞ¼ ½pc�pABðxÞ �
pAðxÞ�½pBðxÞE�1

B ��1 for EAB � EA � E�ðxÞ.
Despite the simplicity of this model, Eq. (1) can be used

to estimate the strength EAB=EB of barrier reduction by
fitting experimental data. For this fitting we first note that
cases (b) and (c) require EAB=EB < pc, since E�ð1Þ ¼
pcEB gives the maximum of the activation energy.
Hence, with percolation thresholds smaller than 0.5 and
variations of activation energies not larger than by a factor
of 2, the generic situation corresponds to Eq. (1). For the
probabilities p�ðxÞ we make the ansatz pAðxÞ � ð1� xÞz
and pBðxÞ � xz [pABðxÞ ¼ 1� pAðxÞ � pBðxÞ], where z is
a mean number of NFU influencing the local transition
barriers. The activation energies of the pure systems are
used to determine the ratio EA=EB ¼ E�ð0Þ=E�ð1Þ.
Knowing this value, E�ðxÞ=E�ð1Þ from Eq. (1) is only a
function of EAB=EB and z (independent of pc),
E�ðxÞ=Eað1Þ ¼ fðEAB=EB; zÞ, which allows us to deter-
mine these remaining two parameters by a least-square fit.

Figure 1 shows such an analysis for the two systems
yLi2Sþ ð1� yÞ½xGeS2 þ ð1� xÞSiS2� [5] and yLi2Sþ
ð1� yÞ½xGeO2 þ ð1� xÞGeS2� [9]. In view of the scatter
in the experimental data, the fitted curves are in fair agree-
ment for parameter values z ’ 2 and a barrier reduction
EAB=EB ’ 60%. As a further example, we also fit the
MGFE found in the rapidly quenched system ð1�
xÞLi4SiO4 þ xLi3BO3, which exhibits no network struc-
ture but can be viewed as an ionic glass composed of SiO4�

4

and BO3�
3 anions, and Liþ cations. Since the Coulomb

traps created by the anions are of comparable strength per
Li ion, we can also for this system conjecture that the
dominant changes of the energy landscape are associated
with energy barriers, corresponding to situation I. Again
we find a reasonable agreement with the experiment with
similar values for z and EAB=EB.

The value of z ’ 2, which describes the mean number of
network forming units influencing the local transition bar-

riers, appears to be rather small. For example, when dis-
tributing A and B units randomly among the centers of a
cubic lattice, where the mobile charge carriers jump along
the lattice bonds, one would have z ¼ 4. The small value
points to the presence of an effective (renormalized) z
when fitting with Eq. (1), which could be caused by spatial
correlations between the jump barriers. Indeed, partial
phase-separation effects of different network formers are
often discussed in the literature. For the GeO2-GeS2 sys-
tem, evidence for spatial correlations was provided re-
cently by reverse Monte Carlo modeling [16], where it
was found that the glass structure is built up from inde-
pendent chains of each of the network formers with the
charge carriers occupying the space in between the chains.
In the GeS2-SiS2 system, small angle x-ray scattering
measurements [5] showed clear phase separation tenden-
cies of the two network formers.
In order to study the effect of partial demixing in the

MBM, we proceed by investigating the consequences of a
kinetically suppressed phase-separation. We presume that
during cooling, phase separation sets in above the glass
transition temperature Tg, which below Tg freezes in.

Inside the resulting domains the pure environments prevail
and the barrier reduction occurs in the interfacial regions.
Specifically we consider the spinodal decomposition of A
and B units with nearest neighbor interactions correspond-
ing to an Ising model at temperature T ¼ 0:22Tc. The NFU
are placed on the centers of a cubic lattice with random
start configuration, and the demixing is carried out by
exchanging units A and B according to the Kawasaki
exchange dynamics until the characteristic domain size
reaches a given value l [17]. Energy barriers are assigned
to the lattice bonds with pure (either 4 A or 4 B units) or
mixed environments by drawing them from the box distri-
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FIG. 1 (color online). Conductivity activation energy for
0:3Li2Sþ 0:7½ð1� xÞSiS2 þ xGeS2� (j) [5], Li2Sþ ½ð1�
xÞGeS2 þ xGeO2� (m) [9], and rapidly quenched xLi4SiO4 þ
ð1� xÞLi3BO3 (�) [2] glasses. The fits (solid lines) according to
Eq. (1) yield EAB=EB ¼ 0:69, z ¼ 2:8 for the SiS2-GeS2 system
and EAB=EB ¼ 0:67, z ¼ 2:0 for the SiO2-B2O3 system.
Because of the missing value for x ¼ 1 in the GeS2-GeO2

system, we fixed z ¼ 2 and fitted E�ðxÞ=E�ðx ¼ 0:8Þ, yielding
EA=EB ¼ 0:63 and EAB=EB ¼ 0:57.
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butions considered above with a symmetric choice of
parameters EA ¼ EB ¼ 2EAB.

Again we can determine the activation energy from a

critical path analysis, but the equation
RE�

0 dEc ðE; xÞ ¼ pc

can no longer be used since it applies only to a random
distribution of the barriers. We calculated E� directly from
the disorder configurations by determining the critical
barrier that a charge carrier needs to surmount in order to
move through the system.

In addition we calculated the frequency-dependent con-
ductivity �ð!; TÞ by the velocity autocorrelation method
[18]. Using these spectra (cf. Fig. 3), we can determine E�

from Arrhenius plots of the low-frequency limit �dcðTÞ. As
shown for representative examples in the inset of Fig. 2, the
slopes of the lines in the Arrhenius plot are in excellent
agreement with the E� values calculated from the critical
path analysis.

The dependence of the function E�ðxÞ on the domain
size l (in units of the lattice spacing a) is displayed in
Fig. 2. For small l & 2:3, the behavior is almost indistin-
guishable from a random barrier distribution, correspond-
ing to E� from Eq. (1) with z ¼ 4 (solid line). For larger l
the curves E�ðxÞ flatten and the MGFE becomes weaker.
We find that these curves for larger l can still be well
described by Eq. (1), if we use an effective z value (dashed
lines). The effective z decreases with l, and for l ¼ 6:2
reaches z ¼ 2:6. This value is comparable to those found
from the analysis of the experimental data in Fig. 1. The
agreement with Eq. (1) moreover demonstrates that we
would obtain barrier reductions close to the exact one
(EAB ¼ 0:5EB), if we fitted the curves for larger l as in
Fig. 1. This gives some confidence in the above estimate of
the barrier reduction effect.

It is clear that the MBM is a simple approach, but it does
allow us to see how barrier reduction in inhomogeneous
environments leads to the MGFE and how large the
strength of this reduction might be expected to be. For a
more microscopic description one would need to incorpo-
rate detailed structural information specific for the glass
system under consideration.
On the other hand, we can ask if there exist universal

features of the ion transport behavior independent of mi-
croscopic details. For a given ion conducting glass compo-
sition, a universal feature is the time-temperature (or
frequency-temperature) scaling of conductivity spectra
[12]. This scaling means that conductivity spectra at differ-
ent temperatures fall onto a common master curve, if one
divides�ð!; TÞ by�dc and! by!cðTÞ, where!cðTÞ is the
crossover frequency to the dispersive regime, as deter-
mined, e.g., by the condition �ð!cðTÞ; TÞ ¼ 2�dc. The
question arises whether this scaling can be extended so
that spectra of different glass compositions collapse onto a
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FIG. 3 (color online). (a) Conductivity spectra �ð!Þ (in units
of �0 ¼ ne2�a2=EA with n the number concentration of mobile
ions) for fixed temperature, kBT=EA ¼ 0:01, two domain sizes l,
and various mixing ratios x. Inset: Conductivity spectra of
LiS2 þ ð1� xÞGeS2 þ xGeO2 glasses for x ¼ 0:1 (d), x ¼ 0:2
(�), and x ¼ 0:4 (j) at T ¼ 253 K, as well as for x ¼ 0:6, T ¼
224 K (m), and x ¼ 0:8, T ¼ 231 K (r). (b) Scaled conductiv-
ity spectra for the data shown in (a).
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FIG. 2 (color online). Normalized activation energy
E�ðxÞ=E�ð0Þ for different domain sizes l ¼ 2:4 (�), 4.3 (h),
and 6.2 (4). The solid line marks the solution Eq. (1) with z ¼ 4,
and the dashed lines are fits to Eq. (1) with z as fitting parameter
(EAB=EB ¼ 0:5 fixed). Inset: Arrhenius plots of the conductivity
(in units of �0, cf. caption of Fig. 3) calculated by using the
velocity autocorrelation method [18] for x ¼ 0:0 (�), and for
x ¼ 0:4 with l ¼ 2:4 (�), 4.3 (h), and 6.2 (4); lines are least-
square fits.
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common curve. For variations of the modifier content
(mobile ion concentration) such ‘‘superscaling’’ has been
observed approximately [19], while deviations from super-
scaling have been found when mixing different types of
mobile ions [20].

In the following we investigate what behavior can be
expected for the MGFE based on the MBM. In the limit of
l ! 0, superscaling is expected, since it was shown in the
RBM that time-temperature scaling is independent of the
form of the barrier distribution [12]. Indeed, we have
confirmed this expectation by our simulations for the dif-
fering distributions with varying x. So far, however, it has
not been investigated, whether the scaling remains valid in
the presence of spatial correlations of the barriers, as they
occur in the course of the partial phase separation dis-
cussed above. Indeed we find a superscaling with respect
to variations of both x and l. This is shown in Fig. 3, where
various conductivity spectra for different x and l in
panel (a) are superimposed onto a common master curve
in panel (b). In the insets of Figs. 3(a) and 3(b) we show
corresponding unscaled and scaled conductivity data for
the Li2Sþ ½ð1� xÞGeS2 þ xGeO2� system. The collapse
of these data in Fig. 3(b) nicely supports the prediction of
superscaling by the MBM. It is noted that the spectra in
Fig. 3(a) also show that the MGFE becomes weaker for
higher frequencies, as expected for an ion dynamics gov-
erned by lower barriers with decreasing length scale (or
increasing frequency) [21].

In summary a model for the MGFE has been developed,
which is based on a reduction of jump barriers for the
mobile charge carriers in local environments containing
different types of NFU. This model has been applied to
glasses with the same local geometry of the two types of
NFU upon mixing. The model is able to fit experimen-
tal data for the conductivity activation energy for repre-
sentative systems and thus allows one to estimate the
strength of the barrier reduction effect. It was shown how
a kinetically frozen phase separation influences the MGFE
and can be effectively described by a renormalized coor-
dination in the environments of the jump paths, in agree-
ment with values obtained from the fits. The MBM pre-
dicts a time-temperature superposition of conductivity
spectra onto a common master curve independent of the
mixing ratio x. This prediction could be confirmed by
data available for one glass system and should be tested
for other glass compositions in the future. From the
theoretical perspective, it would be important to critically
test the underlying model assumptions by calculations on
the molecular level as, e.g., electronic structure calcula-
tions of representative clusters and molecular dynamics
simulations.

We would like to thank V. Petkov for very valuable
discussions. Work on this project was supported in the
Materials World Network by the Deutsche Forschungs-
gemeinschaft (DFG Grant No. MA 1636/3-1) and by the

NSF (NSF DMR Grant No. 0710564).

*philipp.maass@uni-osnabrueck.de; http://www.

tu-ilmenau.de/theophys2
[1] M.D. Ingram, Phys. Chem. Glasses 28, 215 (1987).
[2] M. Tatsumisago, N. Machida, and T. Minami, J. Ceram.

Soc. Jpn. (Jpn. Ed., 1950-1987) 95, 197 (1987).
[3] D. Zielniok, C. Cramer, and H. Eckert, Chem. Mater. 19,

3162 (2007); D. Zielniok, H. Eckert, and C. Cramer, Phys.

Rev. Lett. 100, 035901 (2008).
[4] P. S. Anantha and K. Hariharan, Mater. Chem. Phys. 89,

428 (2005).
[5] A. Pradel, N. Kuwata, and M. Ribes, J. Phys. Condens.

Matter 15, S1561 (2003).
[6] D. Coppo, M. J. Duclot, and J. L. Souquet, Solid State

Ionics 90, 111 (1996).
[7] B. V. R. Chowdari and P. P. Kumari, Solid State Ionics 86–

88, 521 (1996).
[8] B. V. R. Chowdari and P. P. Kumari, J. Phys. Chem. Solids

58, 515 (1997).
[9] Y. Kim, J. Saienga, and S.W. Martin, J. Phys. Chem. B

110, 16 318 (2006); Y. Kim and S.W. Martin, Solid State

Ionics 177, 2881 (2006).
[10] D. E. Day, J. Non-Cryst. Solids 21, 343 (1976).
[11] L. F. Maia and A. C.M. Rodrigues, Solid State Ionics 168,

87 (2004).
[12] J. C. Dyre and T. B. Schrøder, Rev. Mod. Phys. 72, 873

(2000).
[13] Molecular dynamics simulations and general theoretical

considerations suggest that only a relatively small fraction

of about 10% of the ionic residence sites are empty at any

given time. This gives reason to consider the vacancies as

the mobile charge carriers.
[14] In first approximation, the Coulomb interaction between

the mobile ions can be considered to be included in these

distributions as a constant contribution, since the total

mobile ion concentration is almost independent of x.
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