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We simulate the evolution of the steady-state interface in the selective withdrawal regime. Selective

withdrawal ends when the upward pull exerted by the viscous flow in the withdrawing liquid layer

overcomes the downward force due to surface tension. The lower-layer dynamics are unimportant. The

dominant contribution to the surface-tension force comes from the large area where the interface is weakly

deflected, instead of the small area where the surface is most distorted. A scaling estimate based on this

idea yields results that agree quantitatively with both simulations and previous experiments.

DOI: 10.1103/PhysRevLett.102.144501 PACS numbers: 47.55.nm, 47.15.G�

While shape transitions driven by equilibrium dynamics
are rather well understood, analogous transitions driven by
nonequilibrium effects remain active areas of research [1–
9]. Here we examine a simple example of shape transition
driven by viscous flow. Viscous withdrawal in two immis-
cible, stratified liquid layers produces a shape transition
from a hump to a spout. Figure 1(a) gives two images from
the experiment of [4]. A tube is inserted into the upper
layer and suspended above the interface. Liquid is with-
drawn through the tube at a fixed volumetric rate and
replenished far away from the surface. This withdrawal
creates an axisymmetric flow in the upper layer which
converges inwards radially and extends axially. The vis-
cous stress exerted by the withdrawal flow pulls the inter-
face upwards. When Q, the volume flux of liquid
withdrawn through the tube, is small, the interface forms
a hump directly under the tube. Above a threshold value
Qc, the hump is replaced by a spout that is drawn from the
lower layer into the withdrawal tube. The selective with-
drawal regime, in which only liquid from the upper layer is
withdrawn, is thus succeeded by the viscous entrainment
regime, in which liquid from both layers are withdrawn.

Both the stresses due to the fluid flow and those due to
surface tension act on the fluid surface. Two feedback
mechanisms are therefore present in the fluid problem.
First, when the withdrawal flow in the upper layer deforms
the surface, the change in the surface shape in turn modifies
the withdrawal flow. Second, the flow in the upper layer
induces a recirculating flow in the lower layer. The viscous
stress generated by this lower-layer recirculation can also
modify the withdrawal flow. Naively, one would expect
both feedback mechanisms to be relevant in shaping the
interface. However, measurements ofQc for different pairs
of liquids show little dependence on the viscosity of the
lower-layer liquid [10]. Moreover, the measured depen-
dencies of Qc on Sp, the suspension height of the tube,

appear to support two different scaling laws: an S3p scaling

consistent with an estimate obtained by Lister for viscous
withdrawal of two liquids with equal viscosities [3], and a
S2p behavior. For a specific withdrawal experiment, it was

not clear what factors control which scaling law is attained.
From those experimental results, it was also unclear
whether the shape transition is discontinuous, or continu-
ous, corresponding to the tip of the hump sharpening until
becoming singular at Qc [4,10]. Kleine Berkenbusch,
Cohen, & Zhang [11] used a combination of simulations
and experiments to examine the transition for two liquids
of equal viscosity. Their results demonstrate that, as Q
increases towards Qc, the steady-state solution for the
hump disappears via a saddle-node bifurcation. The tran-
sition is discontinuous, with the hump shape remaining
smooth at Qc.
Motivated by these results, we reexamine the approach

to transition. Consistent with the experiments, the numeri-
cal results for different pairs of liquids show clearly that the
feedback mechanism involving the interaction of the upper
and lower layer is unimportant. This simplification results
from the fact that the stabilizing surface tension force is
dominated by the contribution from the large area where
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FIG. 1. (a) Selective withdrawal and viscous entrainment re-
gimes (superposed images). Liquid is withdrawn at volume flux
Q through a tube suspended above the interface separating two
viscous, immiscible liquids. Below Qc, the interface shape is a
steady-state hump (black). Above Qc, a spout forms (grey). The
lower-layer liquid has viscosity �0 and density �0; the upper
layer has viscosity � and density �. The interface has surface
tension �. Photos courtesy of Cohen & Nagel [4]. (b) Schematic
of the numerical model. The suspended tube in the experiment is
modeled by a point sink at height S. The closed surface used in
the boundary integral simulation is the combination of If, the

portion of the interface within the pinning radius a, and Ib, a
back-surface mimicking the effect of a deep lower layer.
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the interface is weakly deflected from being flat, instead of
the small area near the tip of the hump where the interface
is most distorted. This weakly deflected area is a region
where the interface shape is insensitive to the lower-layer
flow. In other words, when the axisymmetric hump solu-
tion fails, it does not fail at the tip, but instead comes apart
everywhere at once. These observations allow us to pro-
pose a new scaling law for Qc, one which successfully
collapses all the data, both numerical and experiment, onto
a single curve. From a practical view point, an understand-
ing of the mechanism controlling Qc is relevant for many
applications, ranging from the encapsulation of biological
cells for transplant therapy [12,13] to microfludic devices
that use flow-focusing to create thin fibers, droplets, or
compound drops [14–17].

Figure 1(b) illustrates the minimal model of viscous
withdrawal we use to analyze the steady-state surface
evolution. The axisymmetric withdrawal flow created by
the suspended tube in the experiment is idealized as a point
sink of strengthQ located a height S above the undisturbed
interface. We use a cylindrical coordinate system where r
is the radial distance from the symmetry axis and z the
height above the undisturbed interface. At a large radial
distance r ¼ a, the fluid interface If is ‘‘pinned,’’ i.e.,

required to have zero deflection. We mimic the effect of
a deep lower layer by requiring that a constant pressure
jump, of size p0, be maintained across the internal fluid
surface Ib. A previous study [11] has tested this model
extensively against the experimental situation and found
that it reproduces the measured dynamics, with the model
parameter p0 and the pinning condition, having little effect
on the outcome. Here, we focus on the results for Qc.

We can estimate the strength of the two feedback mecha-
nisms, the first coupling the interface deformation to the
withdrawal flow, and the second coupling the lower-layer
flow with the upper-layer flow, in terms of dimensionless
parameters. At the interface, the imposed withdrawal flow
has the approximate speed Q=ð4�S2Þ. Since viscous ef-
fects dominate over inertia in both layers in the experi-
ment, the interface deformation occurs with speed �=�,
where � is surface tension and� the viscosity of the liquid
in the upper layer. Thus, the withdrawal flow is strong

relative to the effect of the surface tension when the
dimensionless capillary number Ca ¼ �Q=ð4��S2Þ is
large. The ratio of the lower-layer viscosity relative to
the upper-layer viscosity, �0=�, characterize the interac-
tion between the induced recirculation in the lower-layer
and the imposed withdrawal flow in the upper layer. We
will see that Ca is a key control parameter while �0=� is
not. In addition, the fluid interface must also satisfy the
constraint that it merges smoothly onto the flat, undis-
turbed profile in the far field. In our model, we can char-
acterize this essentially geometric condition with the ratio
S=a. When S is much smaller than a, the pinning is
unimportant. In the withdrawal experiments, the interface
is ‘‘pinned’’ at large distances by stratification so an analo-

gous ratio is Sp=‘�, where ‘� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�=��g
p

is the capillary

length scale. Here, �� is the density difference between
the two liquid layers and g is the acceleration due to
gravity. The capillary length scale roughly corresponds to
the radial distance beyond which the effects of hydrostatics
dominate over surface tension.
We approximate the flows in both layers as purely

viscous. The bulk flow in both layers then satisfies the
linear Stokes flow equations, which we solve using a
Green’s function formulation [18]. The numerical formu-
lation follows that devised by Kleine Berkenbusch, Cohen,
& Zhang, and the full description can be found in the
earlier study [11]. The key steps are that we first obtain
an expression for the velocity on the fluid interface as an
integral over a closed surface formed by the fluid interface,
If and the back surface Ib. We then update the interface

position via the kinematic condition requiring that a mate-
rial point on the surface moves with the velocity on the
surface. This procedure is repeated until either the normal
velocity on the interface approaches 0, signaling conver-
gence onto a steady-state hump solution, or until the inter-
face becomes so deformed that it develops a finger that
extends until it touches the point sink.
We characterize the overall shape evolution by plot-

ting the hump height H against the withdrawal flux Q
[Fig. 2(a)]. To simplify the discussion of the numerical
results, we nondimensionalize the length-scales by the
pinning radius a and the withdrawal flux by the character-
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FIG. 2. Evolution of steady hump solutions. (a) Hump height H=a vs withdrawal flux Q=Q̂. The asterisks indicate the end of
selective withdrawal. (b) Close up of the steady hump shape at Qc. The interface in the numerical model extends to the pinning radius
r=a ¼ 1.
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istic scale Q̂ � �a2=�. We show three HðQÞ curves,
corresponding to �0=� ¼ 0:1, 1 and 50; the sink was
held at the same height of S=a ¼ 0:2 for all three runs.
The end of the selective withdrawal regime in each set is
marked by an asterisk. In all the cases presented, the hump
height H increases as Q increases, eventually saturating as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Qc �Q
p

at a finite value Hc when Q approaches Qc.
Similarly, the hump curvature � saturates at a finite maxi-
mum curvature kc (data not shown). These results are
entirely consistent with results for equal-viscosity with-
drawal [11]. Changing the relative viscosity ratio of the
two layers, therefore, does not change the nature of the
transition. The hump solution still disappears via a discon-
tinuous saddle-node bifurcation. Consistent with previous
results for emulsification of viscous liquid drops [19–21],
the threshold withdrawal flux Qc has a nonmonotonic
variation with the viscosity ratio �0=�. When the lower
layer is made more viscous, increasing�0=� from 1 to 50,

the dimensionless threshold Qc=Q̂ increases from
0:0730� 10�4 to 0:0731� 10�4. Decreasing the viscosity

of the lower layer, so that �0=� ¼ 0:1, increases Qc=Q̂ to
0:0779� 10�4. What is not expected is the very weak

dependence of Qc=Q̂ on the viscosity ratio �0=�, or
equivalently, how close the different HðQÞ curves are to
each other. These features suggest that changing the vis-
cosity ratio �0=� produces essentially the same sequence
of steady-state shapes, and thus terminate at the same
point.

The close-up profiles of the hump shapes at Qc for the 3
runs with �0=� ¼ 0:1, 1, and 50 in Fig. 2(b) provide
further support for this view. Except for a small region
near the tip of the hump, the three shapes essentially
coincide. In fact, the only quantity affected by �0=� is
the tip curvature. The dimensionless curvature of the hump
tip at transition �c increases significantly as �0=� de-
creases. Starting with a value of 38� 1 for �0=� ¼ 50,
it increases to 70� 1 at �0=� ¼ 1, and then to �c ¼
285� 5 at �0=� ¼ 0:1.

The fact that a dramatic change in �c produces essen-
tially no change in Qc suggests that the sharpening of the
hump tip is not important in causing the selective with-

drawal regime to end. This is rather surprising, as the
withdrawal flow and the distortion are both strongest at
the tip. One might then expect local weakening at the tip to
be the most natural mode for the hump solution to fail.
When a viscous flow begins to entrain a thin film of air,
which correspond to a 2D analog of the axisymmetric
process examined here, the interface does fail first at the
tip [14].
To understand why axisymmetric withdrawal produces a

different outcome, we estimate the contributions to the
downwards force exerted by surface tension from different
regions on the interface. Consider a hump with height H
and curvature � that extends over a radial distance L. Away
from the tip, the interface is weakly deflected, with curva-
ture scaling as H=L2. Thus, this region contributes a force
FL � �ðH=L2Þ�L2. At the hump tip, however, the surface
is approximately a half-sphere with radius 1=�. Surface
tension pulls downwards with force F� � ð��Þ2�ð1=�Þ2.
SinceF� scales as 1=�whileFL scales asH, the downward
force exerted by surface tension is dominated by the
broader, weakly deflected region when H�> 1. This is
exactly what axisymmetric withdrawal produces. For all
�0=�, the steady interface always evolves until H� is
larger than 1 so that the dominant contribution to the
stabilizing force comes from the large region where the
interface is only weakly deflected and thus insensitive to
the lower-layer flow. A different failure mode is relevant in
2D air entrainment. In that case, FL scales as �ðH=LÞ
while F� � 2�, and the interface fails before H=L be-
comes much larger than 1, so that the tip region is always
important. As a consequence, the lower layer flow is also
important.
We next estimate Qc using the idea that the hump

solution fails when the upwards force exerted by the with-
drawal flow in the upper layer overcomes the downwards
pull of surface tension. The lower-layer flow is assumed to
have no effect on Qc. The viscous stress due to the with-
drawal flow scales as �Q=½4�ðS�HÞ2H�. Integrating
over the area where the interface is weakly deflected, we
find that F� � �QL2=½ðS�HÞ2H�. Finally, we know

from the simulations that the smaller of the two imposed
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FIG. 3. (a) Rescaled threshold Qcð�=�Þ=S2 as a function of S=a, for three values of �0=�. The asterisk corresponds to the rescaled
threshold withdrawal flux for an interface deformed by a uniform flow. (b) Rescaled measurements for �0=� ¼ 0:001 (solid circle),
0.0013 (cross), 0.006 (open circle), 0.021 (upper triangle), 0.3 (square), 1.26 (diamond), and 1.7 (lower triangle). All data from [4]. The
dashed line indicates numerical results for �0=� ¼ 1, S � a by Lister [3].
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length scales, a and S, controls all the interface deflection
([11] and data not shown). In other words, if S=a � 1, then
both the hump height H and the radial extent L are pro-
portional to S. Thus, F� simplifies to�Q=S. Balancing F�

against FL, which dominates the force exerted by surface
tension, we find

Qc � �ð�=�ÞS2 S=a � 1: (1)

This essentially says that the selective withdrawal ends
when the capillary number Ca is Oð1Þ, regardless of the
value of �0=�. In the opposite limit (S=a � 1), the inter-
face lengths, H, L, and 1=� all scale with the pinning
radius a. The resultant estimate is

Qc � �ð�=�ÞS2 S=a � 1 (2)

which is exactly the same scaling form as the estimate for
S=a � 1. The only difference is the numerical value of the
prefactor. In Fig. 3(a), we check these predictions explic-
itly against our simulations by rescaling the calculated Qc

by ð�=�ÞS2 and plotting the outcome. Regardless of the
viscosity ratio, the rescaled curve approaches constant, but
different, values as S � a and S � a

Next, we show that rescaling the measured values of Qc

reported in [10] by ð�=�ÞS2 collapses the data onto a
single curve. We connect the point-sink model problem
[Fig. 1(b)] with the experiment by setting a ¼ ‘�. We also
relate the sink height S to the tube height Sp via the

formula S ¼ Sp þ d, where d is the tube diameter. This

adjustment formula essentially assumes that the converg-
ing flow experienced by the interface is that produced by a
point sink located at a distance of one tube diameter above
the tube opening. Figure 3(b) shows the comparison after
the rescaling. All the data from the experiment, which
range in viscosity ratio from �0=� ¼ 10�3 to �0=� ¼
1, as well as all the data from the simulations ranging from
0:1 	 �0=� 	 50 collapse onto a single curve. Moreover,
as S=a becomes small, the curve approaches a S2 scaling
form.

The puzzling trend reported by Cohen that half of the
data set show a S3 scaling is a consequence of the data
being taken in the regime S=a � 1, so thatQcðSÞ is chang-
ing from one asymptotic trend to a different one. For
completeness, we have also included numerical results by
Lister [3]. He simulated equal-viscosity withdrawal in the
context of geophysical flows, for which the capillary length
scale ‘� is much smaller than the sink height S. As a result,
a very different constraint condition was used on the far-
field interface. The comparison shows clearly that the
regime analyzed by Lister is outside the regime of the
withdrawal experiment by Cohen, which is why the S3

scaling predicted by Lister does not appear in the final
result.

In conclusion, we analyzed the nonequilibrium flow-
driven transition from selective withdrawal to viscous en-
trainment using a combination of simulations, scaling es-
timate, and comparison with previous experiments. The
flow in the lower layer has a largely passive role, affecting
only how sharply curved the tip of the hump can become
before the transition occurs. As a result, the steady-state
surface evolves through basically the same sequence of
shapes as Q increases. Transition is controlled by a global
force balance, taking place when the upwards force exerted
by the withdrawal flow overcomes the downwards force
due to surface tension.
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