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dissipative perturbations. Our results are applied to generate and control various types of atomic nonlinear

matter waves (solitons) by means of localized dissipative defects.
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Introduction.—Dissipation is one of the main forces
acting against the formation of nonlinear coherent struc-
tures in extended systems. When dissipation is present in
systems without additional gain mechanisms, typically all
excitations decay into the regime of linear waves. In this
Letter we discuss how, contradicting this general principle,
a localized dissipation can be used to engineer the phase of
systems governed by complex order parameters through
the generation of currents that imprint the required phases
in the system. Although our results have general implica-
tions we discuss examples of systems ruled by a universal
model of mathematical physics: the nonlinear Schrödinger
equation (NLS). As to application fields, we will focus on
studying the possibility of controlling the phase of Bose-
Einstein condensates (BECs) to generate different types of
coherent structures.

It was soon after the realization of BECs that their
potential to support nonlinear coherent structures was rec-
ognized. The list of experimentally found excitations in-
cludes: dark [1,2] and bright [3,4] solitons, vortices, vortex
lattices and related structures [5], vortex rings [6], gap
solitons [7], shock waves [8], different types of vector
solitons [9] and Faraday waves [10]. Many techniques
have been discussed to generate these structures but essen-
tially all of them are ‘‘conservative’’ in nature based either
on time-varying potentials, spatially selective optical tran-
sitions or on tailored interatomic interactions.

In ultracold quantum gases dissipative mechanisms are
related to inelastic collisions [11], interaction with the
thermal component [12] or collapse dynamics [4,13].
While the latter can result in surviving matter waves lead-
ing to a ‘‘nondestructive’’ effect of dissipation [14] on
certain nonlinear structures, dissipation is generally found
to damp the excitations and act against the generation or
survival of coherent structures. In this Letter, however, we
show that under certain conditions a properly localized
dissipation, e.g., the one recently demonstrated with the

help of a focused electron beam [15], can be used for
generation and control of matter waves.
Physical system and model equations.—We consider a

quasi-one-dimensional (1D) BEC in the mean-field limit
subject to a localized dissipative defect [15] described
phenomenologically by the distribution �ðxÞ:

ic t ¼ �c xx þ �jc j2c � i�ðxÞc : (1)

Here time and space are measured in units of 2=!? and

a? ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@=m!?
p

, respectively, where !? and a? are the
frequency and linear oscillator length of the transverse
harmonic trap, and � ¼ sgnðasÞ. The macroscopic wave
function is normalized as

R jc j2dx ¼ 4N 0jasj=a?, N 0

and as being the initial number of atoms and the scattering
length, respectively, (see e.g., [16]). The applicability of

the 1D limit is determined by the condition a? � � ¼
ð8�n0jasjÞ�1=2 � ak, where ak is the longitudinal dimen-

sion of the condensate, � is either the healing length, when
excitations against a constant background of density n0 are
under consideration, or a soliton width when one deals with
a spatially localized solution (then n0 is a maximal density
of atoms). The local dissipation [15] is characterized by a
temporal scale �� which is the time interval between
subsequent events of eliminating individual atoms from
the atomic ensemble. The mean-field approximation is
applicable if �� is negligible, i.e., if !?�� � 1, which
is verified for typical configurations where !? � 2��
100 Hz and ��� 100 �s.
Effect of the localized dissipative defect.—To understand

the physics of the phenomena discussed below we notice
that the rate of particle decay in (1) is given by �ðxÞnðxÞ
where n is the local particle density. Thus, the effect
dissipation does not act close to the zeros of nðxÞ and
eventually the loss can become negligible on the scale of
the total population of the ground state provided the loca-
tion of the defect matches the zeros of the density.
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Let us first concentrate on repulsive interatomic inter-
actions (� ¼ 1). If we define � to be the defect size, i.e.,
the domain where �ðxÞ significantly deviates from zero, it
is obvious that when � ! 0 then �ðxÞ ¼ �0�ðxÞ, �ðxÞ
being the Dirac delta, and the real constant �0 character-
izing the strength of the defect (a dissipative � impurity).
In that limit a stationary dark soliton solution of Eq. (1) has

the form c d ¼ 	 expð�i	2tÞ tanhð	x= ffiffiffi

2
p Þ. Obviously, in

that limit the dissipative losses, being localized exactly on
the zeros of the density, are negligible.

In the opposite limit where �ðxÞ � �0 ¼ const a simple
solution of Eq. (1) reads

c ðx; tÞ ¼ 	0e
��0t�i
ðtÞ; 
ðtÞ ¼ 	2

0

2�0
ð1� e�2�0tÞ; (2)

where 	0 is the initial amplitude.
Let us now consider the more interesting and physically

relevant case of a finite size dissipative ‘‘defect’’

�ðxÞ ¼ �0 expð�x2=2�2Þ: (3)

The decay of the atomic density in the center of the defect
is characterized by the time t� ¼ 1=�0. The second tem-

poral scale depends on the size of the defect and is given by
the time ts required for sound waves to leave the defect.

Since the speed of sound near the defect core is cðtÞ ¼
ffiffiffi

2
p

	ðtÞ � ffiffiffi

2
p

	0e
��0t we estimate ts ¼ � log½1�

�0�=ð2
ffiffiffi

2
p

	0Þ�. Thus, if ts � t�, sound waves can emerge

from the defect [Fig. 1(c)]. However if ts � t� the sound

waves are strongly attenuated and the density decays
smoothly in the vicinity of the defect. As it is clear this

last scenario is always realized for � * �cr where �cr ¼
2

ffiffiffi

2
p

	0=�0 [Fig. 1(d)].
To confirm these ideas, we have simulated Eq. (1) with

boundary conditions c ð	L; tÞ ¼ 	0 for large values of L.
Typical outcomes are summarized in Fig. 1. Comparing the
evolution of the density at x ¼ 0 for different widths of the
defect [Fig. 1(a)] we find that, for sufficiently small � ,
nð0; tÞ decays monotonically, while nonmonotonic behav-
ior appears for � > �cr � 2:26. The dynamics always ends
up in some asymptotic regime, and the differences in the
ways of how this regime is achieved are due to the excita-
tion of sound waves, which are clearly seen in the case of
the narrow defect [Fig. 1(c)], while strongly attenuated for
the case of the wide defect [Fig. 1(d)]. We have also
simulated the evolution of an initially uniform BEC
when the defect is conservative [Fig. 1(e)] [17]. While
the creation of a minimum of the atom density and the
excitation of sound waves propagating outwards the defect
look similar to the case of the dissipative defect, the current
density reveals significant differences [Fig. 1(f)]. In the
former case, the currents are transient and due to the
kicking of the atoms from the high-potential regions
around the defect. However, the dissipative defect is a
sink of energy thus, the currents point towards the defect
and are permanent in this scenario. The presence of the
dissipative defect implies the imprinting of a nontrivial
phase on the condensate wave function [Fig. 1(f)].
Figure 1(b) shows another interesting phenomenon: a

more intensive defect results in less intensive loss of con-
densed atoms at large times. More efficient atomic evapo-
ration by a weaker defect can be explained from the fact
that such a defect created a hole with a finite density
leading to the long-term action of the dissipation, while a
strong defect results in fast local density decay to zero and
thus to suppressed long-term effect of the dissipation.
Generation of dark solitons.—Next, we discuss the en-

suing dynamics after removing the dissipative defect at
time tf (Fig. 2). It can be seen how the ‘‘initial’’ dark hole

splits into a packet of sound waves and dark solitons

FIG. 1 (color online). (a) Evolution of the density for different
widths of the defect (3) with �0 ¼ 0:5. The dashed red line
shows the exponential decay (2). (b) Dynamics of NðtÞ normal-
ized to its initial value N0 ¼ 2	2

0L for different strengths of the

defect. In (c) and (d) surface plots of n for the defect with � ¼
1< �cr and � ¼ 5> �cr, respectively. In (e) the same as in (d)
but for �0 ¼ �0:5i (conservative defect). (f) Snapshots of the
current density j ¼ �jc j2½argðc Þ�x at t ¼ 100 for the defect
from (d) (black solid line) and for the conservative defect from
(e) (red dashed line). In all panels � ¼ 1 and 	0 ¼ 0:4.

FIG. 2 (color online). Generation of dark solitons for �0 ¼
0:5, 	0 ¼ 0:4, and � ¼ 1. Shown are density plots with
(a) � ¼ 0:1, tf ¼ 15; (b) � ¼ 0:5, tf ¼ 15; and

(c) � ¼ 0:5,tf ¼ 40. The time range shown is t 2 ½0; 100� and
the spatial range x 2 ½�50; 50�.
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propagating outwards the impurity. This part of the dy-
namics is described by the integrable NLS equation allow-
ing for exact computation of the number of solitons and in
this sense is not related to the type of defect creating the
initial intensity hole. The main difference between con-
servative and dissipative defects, however, stems from the
initial phase shown in panels (c) and (e) of Fig. 1: in the last
case the excitation of linear waves (and eventually small
amplitude dark solitons) is strongly suppressed, which
makes the process more controllable. A qualitative feature
of the phenomenon displayed in Fig. 1(f) is that while the
dissipative defect is acting, its main effect is imprinting a
phase variation propagating outwards the defect. In Fig. 2
one observes the small amplitude waves generated at t < tf
as dark solitons created by the phase imprinting, while at tf
when the defect is switched off, the shape of the dark hole
changes generating two well-separated deep (slow) dark
solitons (at this stage, the generation of solitons is domi-
nated by the density engineering). In other words, the
dissipative defect provides a controllable way of generat-
ing dark solitons based on phase and density engineering.

The situation in a trap might be very different because of
a finite number of condensed atoms, resulting in degrada-
tion of the whole picture after a significant loss of particles.
To study this scenario, we have considered an additional
term in Eq. (1) of the form �2x2c where � determines the
linear oscillator frequency of the longitudinal harmonic
trap. In Fig. 3(a) we present the evolution of the density
in the center of the trap for different widths of the dis-
sipative defect. The initial dynamics (not visible on the
scale of the figure) is very similar to that of the case with a
constant background [Fig. 1(a)]. With time the loss of
particles results in a significant decrease of the background
which takes the system beyond the mean-field regime. This
happens, however, after a sufficiently long time: � 800 in
our dimensionless units.

When the dissipative effect is switched off soon enough,
we still observe [Fig. 3(c)] the generation of dark solitons
which are later reflected by the parabolic potential and start
their characteristic oscillatory motion [2,16].

Bright solitons.—When the interatomic interactions are
attractive, �< 0, a uniform background is modulationally

unstable. In this case, the instability is triggered by the
dissipative defect leading to the emergence of the spatial
structures as it is shown in Fig. 4. In comparison with the
repulsive case, we observe a faster decay of the ampli-
tude in the defect domain due to the stronger attraction
of atoms by the populated regions than by the defect re-
gion (in the repulsive case atoms are repelled from the
densely populated domains). The development of the in-
stability leads to the creation of solitonic pulses [Fig. 4(c)].
This is another counterintuitive phenomenon since solitons
are characteristic excitations of Hamiltonian conservative
systems. However, it is easy to see that after the density
hole is created the loss of the atoms is significantly reduced
and almost everywhere the system remains ‘‘almost-
conservative’’.
Gap solitons.—Optical lattices (OLs) have proven to be

one of the most successful tools for matter-wave manage-
ment [18]. Now we consider again Eq. (1) but with the
addition of the periodic potential VðxÞ ¼ A cosð2xÞ, whose
period is chosen to be � provided the amplitude A is
measured in the units of the recoil energy Er. The back-
ground solution must be taken as a Bloch state, ’�ðxÞ
bordering an edge of a gap of the energy spectrum,
c ðx; 0Þ ¼ 	0’�ðxÞ (	0 measures the density amplitude
and we consider the first lowest gap).
We consider � ¼ �1 and moderate OL depths (A ’ 1).

Then a Bloch state background is stable (unstable) when it
borders the bottom (top) of a band corresponding to posi-
tive (negative) effective mass. The behavior of Bloch states
affected by the localized dissipative defect closely re-
semble the dynamics in a homogeneous condensate, with
the major qualitative difference that both dark and bright
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FIG. 3 (color online). Effect of the dissipative defect on the
condensate in a trap for � ¼ 1, � ¼ 0:002, 	0 ¼ 0:4, and �0 ¼
0:5. (a) nð0; tÞ for different defect widths: � ¼ 0:5, 2, 5.
(b) Pseudocolor plot of the density evolution for � ¼ 2.
(c) Same as in (b) but removing dissipation at tf ¼ 100.
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FIG. 4. Generation of bright solitons for �0 ¼ 0:5, 	0 ¼ 0:4.
(a) nð0; tÞ for different defect widths (� ¼ 1, 3, 5). (b) Density
profile at t ¼ 50 (b) and (c) density evolution for � ¼ 3.
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FIG. 5. Generation of dark (a) and bright (b) gap solitons after
switching off the defect, with �0 ¼ 0:5 and � ¼ 2, at tf ¼ 40

and tf ¼ 100, respectively (solid lines). The initial profiles

(dashed lines) are Bloch states for A ¼ �1 and 	0 ¼ 0:5. The
dashed line indicates the defect profile.
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solitons can be generated in an attractive BEC, starting
with states with positive and negative effective masses,
respectively [Fig. 5].

In deep optical lattices jAj * 10, however, we have
arrays of well-separated condensates, among which atomic
exchange can occur due to the tunneling and the tight
binding approximation becomes more adequate [18]. The
most exciting effect which can be observed in this situation
is the creation of persisting density holes due to the sup-
pression of tunneling by the attractive nonlinearity.
Figure 6, where we compare the dynamics with and with-
out the nonlinearity, illustrates this phenomenon.

The stationary density hole created in the case � ¼ �1
[panel (a)] is not a dark gap soliton: in our case the initial
alternating phase of the Bloch state is preserved and the
concept of effective mass loses its significance because the
bands are very narrow. Thus the created hole is supported
only by the interplay between the tunneling and the attrac-
tive nonlinearity and does not have any analogy in the case
of a homogeneous medium. The phenomenon can be
understood in terms of the effective potential. Indeed, after
long enough time the distribution nðxÞ becomes (quasi-)
stationary, even in the presence of the dissipative defect,
and VeffðxÞ ¼ VðxÞ � nðxÞ can be interpreted as the effec-
tive potential affecting a single particle. Since for V �
10Er the band width is of the order of 0:01Er and n�
0:15Er, in the absolute minimum of Veff the lowest energy
levels are shifted down, the shift being an order of magni-
tude larger than the energy splitting due to hopping, result-
ing in the suppression of tunneling to the central cell.

Multidimensional examples.—A localized dissipative
defect can be used for generating higher dimensional non-
linear structures. As an example we have simulated the
effect of a 2D Gaussian defect (3) in a repulsive pancake
shape BEC in a harmonic trap �2ðx2 þ y2Þ. After switching
off the defect at time tf we observe the generation of ring

dark solitons [19], as shown in Fig. 7.
Conclusion.—We have shown how a dissipation source

can be used to generate nonlinear coherent excitations such
as dark, bright, gap or ring dark solitons by engineering
both the phase and amplitude in systems described by NLS
equations. Our results can be applied to matter wave
management in BECs.
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FIG. 6. Initial (thin line) and final (thick line) at t ¼ 1000
profiles of the density with, � ¼ �1, (a) and without,
� ¼ 0, (b) the nonlinearity. The parameters are 	0 ¼ 0:4, � ¼
0:5, and A ¼ �10. The dashed line illustrates the defect.

FIG. 7 (color online). Density plots on the region ðx; yÞ 2
½�30; 30� � ½�30; 30� for different times. The parameters are
tf ¼ 10, �0 ¼ 0:5, � ¼ 2, 	0 ¼ 0:66, and � ¼ 0:01.
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