
Collective Lamb Shift in Single Photon Dicke Superradiance

Marlan O. Scully

Princeton University, Princeton, New Jersey 08544, USA
Texas A&M University, College Station, Texas 77843, USA

Max-Planck-Institut für Quantenoptik, Garching D-85748, Germany
(Received 30 December 2008; published 6 April 2009)

The collective Lamb shift and associated radiative decay of a large cloud of radius R containing N

atoms uniformly excited by one photon of wavelength � is analyzed. It is shown that the time evolution of

the symmetric state prepared by single photon absorption in the limit R � � is similar to that encountered

in the Dicke limit of small sample (R � �) superradiance. The theory includes virtual (counterrotating)

terms naturally and thus provides a simple calculation of the collective Lamb shift of a single Dicke state.
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The Lamb shift [1] and Dicke superradiance [2] are two
of the most intriguing effects in atomic physics and quan-
tum optics. Lamb measured the electromagnetic level shift
in hydrogen and provided the stimulus for renormalized
quantum field theory. Dicke gave us a simple formalism for
calculating the collective spontaneous emission from a
small cloud of N atoms yielding fascinating results; e.g.,
one symmetric excitation of such a cloud will decay N
times faster than a single isolated atom. We call this
‘‘single photon superradiance.’’

In the Dicke limit R � � appropriate to NMR (sample
radius R, resonant radiation wavelength �) this single
photon superradiance is obtained when the symmetric N
atom Dicke state, given by

jþi ¼ 1ffiffiffiffi
N

p X
j

j#1#2 . . . "j . . . #Ni (1a)

decays to the ground state j#1#2 . . . #Ni, with a rate propor-
tional to N, where the atomic excited (ground) state of the
jth atom is denoted by "j (#j ). For most laser experiments

R � �, and conditional preparation [3,4] by a single pho-

ton of wave vector ~k0 yields the state

jþik0 ¼
1ffiffiffiffi
N

p X
j

ei
~k0� ~rj j#1#2 . . . "j . . . #Ni; (1b)

where ~rj denotes the vector position of the jth atom. The

physics contained in the phase factors is best understood by

noting that ~k0 � ~rj ¼ !n̂0 � ~rj=c � !ti (n̂0 ¼ ~k0=jk0j and
! is the atomic resonant frequency) showing that atoms at
various locations ~rj are excited at different times ti. This

message was conveyed in the subtitle of Ref. [3] with the
phrase: ‘‘timing is everything.’’ Hence we call the state
(1b) a timed Dicke state, and the corresponding complete
set is called the timed Dicke basis, see Table I and Fig. 1;
there the notation jþik0 � jB0i is introduced.

The focus of the present Letter is a toy model yielding
the dynamical evolution of the atomic system described by
jB0i, associated with real (decay) and virtual (level shift)
photon emission. Specifically we find to a good approxi-

mation that the probability amplitude �0 for the large
sample state jB0i obeys the simple small sample super-
radiance type equation

_� 0 ¼ �ð�þ �N þ iLNÞ�0; (2a)

where � is the single atom decay rate and the collective
decay rate of the atomic cloud containing N atoms in a

volume V of radius R is given by �N ¼ �
2�

N�1
V �2R, while

the N atom Lamb shift [3,4] of jB0i is given by

L N ¼ � �

�

�
ln
K2 � k20

k20
� N ln

K þ k0
k0

�
þ �N

�

�

4R
S;

(2b)

where K is the Bethe cutoff, k0 ¼ !=c, and S is an unin-
teresting shape factor of order one; see Eq. (15). The first
term in Eq. (2b) is the usual single (two level) atom level
shift; the second term is a collective shift common to the
ground state; see Eqs. (16) and (17). The last term is the
interesting one.
Several aspects of (2a) and (2b) are noteworthy. First of

all the simple Eq. (2a) for�0 has been, and continues to be,

TABLE I. The ground state and first excited states of extended
medium single photon superradiance. In the convenient spin
notation j#iðj"iÞ represents an atom in the ground (excited) state.
Position in the bra denotes atomic number e.g. j#1#2 . . . #Ni is
written j## . . . #Ni. The wave vector ~k0 is determined by the
preparation photon and ck0 ¼ ! is the atomic resonant fre-
quency.

jC0i ¼ j### . . . #Ni
jB0i ¼ 1ffiffiffi

N
p P

je
i ~k0�~rj j### . . . "j . . . #Ni

jB1i ¼ 1ffiffi
2

p ½ei ~k0�~r1 j"## . . . #Ni � ei
~k0� ~r2 j#"# . . . #Ni�

jB2i¼ 1ffiffi
6

p ½ei ~k0� ~r1 j"## . . . #Niþei
~k0� ~r2 j#"# . . . #Ni�2ei

~k0�~r3 j##" . . . #Ni�
..
.

jBN�1i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN�1Þ

p ½ei ~k0�~r1 j"## . . . #Ni þ ei
~k0� ~r2 j#"# . . . #Ni þ . . .

þ ei
~k0�~rN�1 j### . . . "N�1; #Ni � ðN� 1Þei ~k0� ~rN j### . . . "Ni�
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the subject of debate and confusion. The good news is that
Eq. (2a) is very simple. The bad news is that it only applies
for large number density, N=V, and for a specifically
prepared atomic configuration, i.e., jB0i. This has been a
frequent topic of discussion and source of confusion. For
example, if we consider the case of N ¼ 3, in the large
sample limit, then �0 evolves according to Fano-Agarwal
coupling such that

_� 0 ¼ ��0;0�0 � �0;1�1 � �0;2�2; (2c)

where �1 (�2) is the amplitude of the jB1i (jB2i) state of
Table I. The decay rates �0;‘ are discussed in the following.

Only in the large sample limit is �0;‘�‘ small for ‘ � 0,
see Eqs. (9)–(12) and associated discussion.

Second, Friedberg and Manassah argued in an interest-
ing paper [5(d)] that the virtual photon-Lamb shift pro-
cesses [5] can complicate the decay and negate the validity
of Eq. (2a). In their words: ‘‘[The neglect of virtual photon
processes] supports the illusory Dicke picture of small
sample superradiance according to which the symmetric
state is superradiant . . . .’’ Counterarguments and debate
followed [6]. Hence, establishing the validity of (2a) in a
clear and convincing way is our first goal.

More importantly, the present approach provides a use-
ful tool for calculating the Lamb shift of the state jB0i ¼
jr ¼ 1

2N;m ¼ � 1
2N þ 1i. To put this in perspective we

quote from the classic paper of Friedberg, Hartman and
Manassah (FHM): they say [7] that the calculation ‘‘of the
energy shift of such a state is not easily computed.’’
Instead, they calculate a Lamb shift associated with an
average over states B‘ of Table I. In fact the present
approach allows us to readily calculate the Lamb shift
(2b) for state jB0i with the same level of effort required
to calculate the cooperative decay (1b).

Finally, we note that the calculations yielding the most
interesting many body contribution to the Lamb shift going
as �N�=R scales as R�3 and is free from the usual diver-
gences and cutoffs encountered in calculating the single
atom Lamb shift [see discussion after (14)]. That is, in
order to arrive at the single atom level shift the (infinite)
self-energy had to be subtracted off as was shown by

Bethe. In the present problem, the need for renormalization
is mitigated by the summation over atomic phase factors of

the form expið ~k� ~k0Þ � ~rj, as is discussed later in connec-

tion with Eqs. (9)–(12).
In concluding our introduction, we note that while the

small sample Dicke limit (R � �) has an appealing sim-
plicity, it neglects the near dipole component of the field
and various effects of short wavelength virtual photons.
Such effects can have important consequences, e.g., can
destroy superradiance. One way to overcome the undesired
effects of nearby atoms is to replace the small sample by an
extended cloud. Unfortunately this tends to destroy super-
radiance since it brings in subradiant states (i.e.
jB1i . . . jBNi of Fig. 1 and we lose the charm and the
simplicity of the Dicke limit. Nevertheless, to a good
approximation we here report simple small sample super-
radiance for large samples.
Hence we focus on the collective Lamb shift in an

extended sample whose radius R is large compared to the
resonant wavelength �. This is a challenging problem and
we shall make several assumptions which allow us to bring
out the physics most simply. To that end, we use a scalar
photon theory ignoring the polarization and vector charac-
ter of the field, make the Markov approximation, and
ignore related effects such as the Lorenz-Lorentz effect.
None of these idealizations are very serious, the essential
physics of the collective Lamb shift remains intact, espe-
cially in the important limit of very large R. Even with
these approximations the problem is complicated, but the
present toy model (and approximate analysis) lays out the
problem clearly and will (hopefully) clarify issues and
stimulate interest. Having set the stage we proceed to
derive Eqs. (2a)–(2c) and develop the physics of the col-
lective Lamb shift as elucidated by the calculation.
The interaction Hamiltonian, in the interaction picture,

is given by

VðtÞ ¼ X
j;k

"gk�ja
y
k e

�i ~k�~rjeið�k�!Þt þ adj

þX
j;k

"gk�
y
j a

y
k e

i ~k� ~rjeið�kþ!Þt þ adj; (3)

where the coupling constant gk ¼ !}=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"�0��k

p
with }

being the dipole matrix element,! the atomic frequency, �
the photon quantization volume, �0 the permittivity of free
space and �k ¼ ck is the frequency of the kth radiation
mode. The lowering (raising) operators for the jth atom

and the kth field mode are �jð�y
j Þ and akðayk Þ. The relevant

state vector, for calculation of �0ðtÞ in the notation of
Fig. 1, is

jc i ¼ X
l

�ljBl; 0i þ
X
k

�kjC0; 1ki þ
X
k;l

	l;kjAl; 1ki: (4)

FIG. 1. The timed Dicke states corresponding to the first three
energy levels of a uniformly excited cloud of N atoms. The
important Bl states are given in Table I. The solid lines indicate
the Fano-Agarwal coupling from the initially prepared B0 state.
The dashed lines indicate virtual transitions in which an atom
jumps from the ground state to an excited state while emitting a
photon. The Bl states have one excited atom and the Al states
have two excited atoms. The A‘ state can be computed from the

B‘ states by applying
P

je
i ~k0� ~rj�þ

j .
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The probability amplitudes obey the equations

_� l ¼ �i
X
k;j

hBl; 0jgk�y
j akjC0; 1kiei ~k� ~rj�ið�k�!Þt�k

� i
X
k;l0;j

hBl; 0jgk�jakjAl0 ; 1kiei ~k� ~rj�ið�kþ!Þt	l0;k (5)

_� k ¼ �i
X
l;j

hC0; 1kjgk�ja
y
k jBl; 0ie�i ~k� ~rjþið�k�!Þt�l; (6)

_	 l;k¼�i
X
l0;j

hAl;1kjgk�y
j a

y
k jBl0 ;0ie�i ~k� ~rjþið�kþ!Þt�l0 : (7)

Integrating (6) and (7) to obtain �kðtÞ and 	l;kðtÞ and

inserting into (5) we obtain

_� 0 ¼ �X
k;l

g2k

Z t

0
dt0

�X
i;j

hB0j�y
j jC0ihC0j�ijBli

� e�ið�k�!Þðt�t0Þ�lðt0Þ

þ X
i;j;l0

hB0j�jjAl0 ihAl0 j�y
i jBlie�ið�kþ!Þðt�t0Þ�lðt0Þ

�
:

(8)

Evaluating the matrix elements Eq. (8) becomes

_� 0ðtÞ ¼ �X
k

g2k

Z t

0
dt0

�
ð ~R0;0ðt0Þ þ ~~R0;0ðt0ÞÞ�0ðt0Þ

þ XN�1

l¼1

R0;lðt0Þ�lðt0Þ
�
; (9)

where the rate coefficients R0;l are given by

~R 0;0 ¼ e�ið�k�!Þðt�t0Þ þ ðN � 1Þe�ið�kþ!Þðt�t0Þ; (10)

~~R 0;0 ¼ 1

N

X
i�j

eið ~k0� ~kÞ�ð ~ri� ~rjÞe�ið�n�!Þðt�t0Þ

þ 1

N

X
i�j

eið ~k0þ ~kÞ�ð ~ri�~rjÞe�ið�nþ!Þðt�t0Þ; (11)

R 0;‘ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nlðlþ 1Þp X

i

e�ið ~k0� ~kÞ�~riSð‘; ~k; !Þ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nlðlþ 1Þp X

i

e�ið ~k0þ ~kÞ� ~riSð‘;� ~k;�!Þ; (12)

where

Sð‘; ~k; !Þ ¼ Xl
j¼1

½eið ~k0� ~kÞ�~rj � eið ~k0� ~kÞ� ~r‘�e�ið�k�!Þðt�t0Þ

in which the first (second) term in (11) and (12) corre-
sponds to real (virtual) processes.

Considering the off-diagonal factors R0;l, we first note

that for a large sample,

X
i

eið ~k0� ~kÞ�ð ~rjÞ ! 
ð ~k� ~k0Þ;

and, in this limit, the Sterms in (12) tend to zero. Thus the
R0;0 term dominates dominates; i.e., the contribution from

the off-diagonal terms proportional to �1; �2; . . . ; �N�1 is
small and, for the present purposes, may be neglected. This
is in keeping with the spirit of the present toy model
neglecting photon polarization and Lorenz-Lorentz effects,
etc. Using


ð ~k� ~k0Þ ¼ ð2�Þ2
k2

Z R

�R
dreiðk�k0Þr
ð�̂ ~k � �̂� ~kÞ; (13)

where �̂ ~k is the angular unit vector, making the Markov

approximation, setting � ¼ }2!3=2�@�0c
3, and replacing

the sum over ~k by an integral, Eq. (9) becomes

_� 0 ¼ ���0 �
�
�

2�

N � 1

V
�2R

�
�0ðtÞ þ i

�

�k0

�
Z K

0
kdk

�
1

k� k0
þ N � 1

kþ k0

�
�0ðtÞ þ i

�

k0

N � 1

V

�
Z 1

0

dk

k

Z R

�R
dreiðk�k0Þr

�
1

k� k0
þ 1

kþ k0

�
�0ðtÞ;
(14)

where K is the cutoff. We proceed to carry out the first
integral by subtracting off the electron self-energy terms;
i.e., replace ðk� k0Þ�1 by ðk� k0Þ�1 � k�1

0 as it appears

in the square brackets. The second integral is finite [due to

the
P

expið ~k� ~k0Þ � ð~ri � ~rjÞ factor in (11)] and yields a

simple result in the k0R � 1 limit. Equation (1) then yields

_� 0 ¼ �ð�þ �NÞ�0 þ i½�
�
ðlnK

2 � k20
k20

� N ln
K þ k0

k0
Þ

� �N

�

�

4R
S��0;

(15)

where �N is given by Eq. (1b) and S ffi 1�
cosð2k0RÞ=�k0R.
A similar calculation for the ground state yields

_� 0 ¼ �i

�
�

�
N ln

K þ k0
k0

�
�0 (16)

so the relative level shift between jB0i and jC0i is,


!� � 
!� ¼ � �

�
ln
K2 � k20

k20
þ �N

�

�

4R
S: (17)

The amplitude of the jB0i state (1a) has been shown to
decay predominantly to jC0i even though the collective
Lamb shift can be large. This supports the approach and
results of Refs. [3]. Furthermore, the techniques developed
to calculate the collective decay rate are extended to com-
pute, for the first time, the Lamb shift of the jB0i state. The
many particle (atom-atom) contribution to the Lamb shift,
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Ln 
 �N�=4R
 N�ð�=RÞ3 can be much larger than the
single particle shift (which is of order �); e.g., for a gas at
1 torr N=R3 
 1016 atom=cm3 and taking � ¼ 1� yields
LN 
 104�.

It is important to note that cooperative spontaneous
emission is essentially a many body eigenvalue problem
[8]. For instance in the timed Dicke basis Eqs. (9)–(12) (in
the Markov approximation) may be easily extended to
obtain

_�mðtÞ ¼ �X
l

�m;l�lðtÞ: (18)

We have shown that in the large N limit _�0 ’ ��0;0�0.

Of course, there are many other choices of basis states,
for example, the single atom jji basis that has been studied
extensively [8]. The decay eigenvalue problem in this basis
has been shown to be

_� jðtÞ ¼ ���jðtÞ þ i�
XN

i¼1;i�j

expðik0j~rj � ~rijÞ
k0j~rj � ~rij �iðtÞ;

(19)

which is a useful expression for many problems is but not
the natural basis for the case in which the atoms start out in
jB0i. Connection with past [9] and future experiments as
well as other related theoretical work [10] will be pub-
lished elsewhere.

In conclusion, it is to be emphasized that it is the timed
Dicke basis that yields the simple results contained in
Eq’s. (2), and clearly demonstrates the utility of the basis.
Specifically, when the sample is large enough jB0i decays
to jC0i with only a small percentage coupled into states
jB‘i. In such a case the mathematics is simplified, and we
regain the essential charm of the Dicke formalism in the
R � � limit [11]; this provides a useful tool for investigat-
ing properties such as the collective decay rate and Lamb
shift.
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