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A wide class of dilatation symmetric effective actions in higher dimensions leads to a vanishing four-

dimensional cosmological constant. This requires no tuning of parameters and results from the absence of

an allowed potential for the scalar dilaton field. The field equations admit many solutions with flat four-

dimensional space and nonvanishing gauge couplings. In a more general setting, these are candidates for

asymptotic states of cosmological runaway solutions, where dilatation symmetry is realized dynamically

if a fixed point is approached as time goes to infinity. Dilatation anomalies during the runaway can lift the

degeneracy of solutions and lead to an observable dynamical dark energy.
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Dilatation symmetry may play a crucial role in our
understanding of cosmology [1]. If the quantum effective
action is scale invariant, a spontaneous breaking of the
dilatation symmetry by a nonzero value of the scalar dila-
ton field will lead to a massless Goldstone boson. In the
presence of a dilatation anomaly, a potential and a small
mass for this field are generated—the pseudo Goldstone
boson becomes the cosmologically relevant ‘‘cosmon
field.’’ For many cosmological ‘‘runaway solutions’’ the di-
latation anomaly vanishes asymptotically, as a fixed point
is approached for time going to infinity [2]. As a conse-
quence, the mass of the cosmon field decreases with time.
Typically, it is of the order of the Hubble parameter [3]. If
the fixed point occurs for a vanishing cosmological con-
stant, rather interesting quintessence cosmologies follow
from this scenario [1]. They describe tracker solutions with
dynamical dark energy [1–4]. Our approach aims for an
explanation for why the cosmon potential vanishes asymp-
totically rather than approaching a nonvanishing constant.

In four dimensions, dilatation symmetry alone cannot
explain why the fixed point occurs for a vanishing cosmo-
logical constant. Within a dilatation symmetric standard
model of elementary particle physics, every mass scale is
replaced by a combination h�, with � the scalar dilaton
field and h some appropriate dimensionless coupling.
Four-dimensional dilatation symmetry permits a polyno-
mial potential Vð�Þ ¼ ��4. After Weyl scaling, this results
in the Einstein frame as an effective cosmological constant
proportional to the dimensionless coupling �. In contrast,
dilatation symmetry in dimension d > 6 does not allow
anymore a polynomial potential. We will show in this
Letter that, for a wide class of dilatation symmetric effec-
tive actions, this simple fact results in a vanishing four-
dimensional cosmological constant without a tuning of
parameters.

Consider the quantum effective action � for the metric
ĝ�̂ �̂ and a dilaton field � in arbitrary dimension d. It

includes all effects from quantum fluctuations, including
those of effective four-dimensional fields after spontaneous
compactification. The field equations or other constraints

[2] that arise from the extremum condition for � are exact.
Scale transformations (dilatations) act on the fields by
multiplicative rescaling with powers of a constant �,

ĝ�̂ �̂ ! ��2ĝ�̂ �̂, � ! �ðd�2Þ=2�, while the coordinates x̂�̂

remain unchanged. We will first explore the consequences
of two simple assumptions: (i) the effective action is scale
invariant; (ii) � can be written as a polynomial of � and the

curvature scalar R̂�̂ �̂ �̂ �̂ or their covariant derivatives. We

emphasize that we do not assume that the effective action
as a whole has these properties. It is sufficient that our
assumptions hold for the fixed point when the dilatation
symmetry violating terms have vanished for a runaway
solution approaching the fixed point arbitrarily close.
With our assumptions the most general dilatation sym-

metric effective action reads, with ĝ ¼ detð�ĝ�̂ �̂Þ,

� ¼
Z
x̂
ĝ1=2

�
� 1

2
�2R̂þ �

2
@�̂�@�̂�þ F

�
: (1)

The first two terms are the higher-dimensional general-
ization of the Jordan-Brans-Dicke theory [5] in the absence
of matter, while F contains higher powers of the curvature
tensor. The most striking property of (1) is the absence of a
potential for �. Indeed, a scale-invariant polynomial �n,
n 2 N, requires nðd� 2Þ=2 ¼ d. For d ¼ 4 one has n ¼
4, and for d ¼ 6 a cubic potential ��3 is possible, but no
solution exists for d > 6.
The field equations derived from � read

�D�̂D�̂�þ R̂� ¼ 0; (2)

�2ðR̂�̂ �̂ � 1
2R̂ĝ�̂ �̂Þ ¼ Tð�Þ

�̂ �̂ þ TðFÞ
�̂ �̂; (3)

with Tð�Þ
�̂ �̂ involving derivatives of �. For geometries with

singularities the extremum condition for � yields further
‘‘brane constraints’’ [6]. For example, an extremum with
respect to the infinitesimal variation � ! �½1þ 	ðxÞ� re-
quires a vanishing boundary termZ

y
@�̂ðĝ1=2�@�̂�Þ ¼ 0; (4)
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with
R
y indicating the integration over the ‘‘internal coor-

dinates’’ y
, while x� denotes the four-dimensional co-
ordinates.

Neglecting first the contribution TðFÞ
�̂ �̂ from F, the field

equations have a simple class of static solutions, namely,

� ¼ �0 ¼ const; R̂�̂ �̂ ¼ 0: (5)

These are candidates for the asymptotic limits of time-
dependent cosmological solutions as t ! 1. The condition

of Ricci flatness R̂�̂ �̂ ¼ 0 still allows many different ge-

ometries. Among them is d-dimensional Minkowski space.
More interesting for the real world are geometries which
are a direct product of flat four-dimensional Minkowski
space and a Ricci-flat D-dimensional internal space (D ¼
d� 4) with finite volume �D. Such geometries admit
dimensional reduction to an effective four-dimensional
theory. If we keep only the four-dimensional metric

gð4Þ��ðxÞ and a scalar dilaton field �ðxÞ ¼ �1=2
D �ðxÞ, the

reduced four-dimensional effective action �4 exhibits an
effective four-dimensional dilatation symmetry

�ð4Þ ¼
Z
x
ðgð4ÞÞ1=2

�
� 1

2
�2Rð4Þ þ �

2
@��@��

�
: (6)

No term ���4 appears—the effective four-dimensional
cosmological constant vanishes.

If internal space has isometries, �ð4Þ can be extended to
include the gauge bosons of the corresponding local gauge
symmetry. For finite �D the dimensionless gauge cou-
plings are finite and nonzero. A simple example for a
Ricci-flat internal space is a D-dimensional torus with
isometry Uð1ÞD, but there are many more possibilities,
including spaces with non-Abelian isometries. Beyond a
polynomial approximation to the effective action, the
four-dimensional gauge coupling may be running, accord-
ing to a gauge and dilatation invariant kinetic term
�F��Kð�D�D�=�

2ÞF��. For asymptotically free theo-

ries this can result in particle masses proportional to a
‘‘confinement scale’’ �c which scales ��. Ratios of par-
ticle masses and the effective Planck mass � do not depend
on � in this case. Solutions (5) with finite �D share there-
fore many aspects of a satisfactory asymptotic state of
cosmology—namely, flat space and particle physics with
constant dimensionless couplings and mass ratios.

In even dimensions we may include a suitable poly-

nomial F of the curvature tensor R̂�̂ �̂ �̂ �̂ and its covariant

derivatives. Consider first the case where F can be written

as a polynomial of R̂�̂ �̂ and its covariant derivatives. The

solution (5) persists. The variation of F always contains

terms linear in R̂�̂ �̂ and its covariant derivatives and there-

fore gives no contribution if R̂�̂ �̂ ¼ 0. This general form of

F contains a large number of different invariants, with
different dimensionless couplings �i. We have therefore
established solutions for which the effective four-
dimensional cosmological constant vanishes for arbitrary
�i, involving no tuning of parameters. The most general

form of F can be written as a polynomial of R̂, the traceless

part of the Ricci tensor Ĥ�̂ �̂ ¼ R̂�� � 1
d R̂ĝ�̂ �̂, and the

totally antisymmetric part of the curvature tensor

Ĉ�̂ �̂ �̂ �̂ ¼ R̂½�̂ �̂ �̂ �̂�, as well as covariant derivatives

thereof. Flat space geometries R̂�̂ �̂ �̂ �̂ ¼ 0, � ¼ �0 always

solve the field equations.
We next turn to a general discussion of ‘‘quasistatic’’

geometries, for which the internal geometry and � are in-
dependent of x�, while the four-dimensional space-time is
maximally symmetric. The four-dimensional Ricci tensor

obeys Rð4Þ
�� ¼ �gð4Þ��, where positive (negative) � corre-

sponds to (anti–)de Sitter space and a vanishing cosmo-
logical constant � ¼ 0 to flat Minkowski space. For this
discussion we weaken our assumptions and require no
longer a polynomial dependence of F on the curvature ten-
sor. For this very general setting, we find as a central result
of this Letter that all stable extrema of the effective action
with nonzero � and finite characteristic length scale l of in-
ternal space have a vanishing cosmological constant. More
precisely, we can show that for j�j � �2 no stable ex-
trema of � with � � 0 exist in this case. Stable quasistatic
solutions single out a vanishing cosmological constant.
The direct product solutions are not the only interesting

geometries. There may be singular solutions with warping
[7–10], corresponding to a brane [8,11] or a ‘‘zero warp’’
[7] sitting at the singularity. Such spaces may be interesting
because they can lead to chiral fermions after dimensional
reduction [12]. The most general quasistatic geometry

ĝ �̂ �̂ ¼ �ðyÞgð4Þ��ðxÞ; 0

0; gðDÞ

�ðyÞ

 !
(7)

involves the warp factor �ðyÞ and the internal metric
g
�ðyÞ. For singular solutions one can always obtain local

solutions with � ¼ 0, but often also neighboring solutions
with � � 0 exist [7–9]. We find that some of the solutions
with � ¼ 0 (flat four-dimensional geometry) are consis-
tent extrema of the action [6]. In contrast, neighboring
solutions with a small j�j � �2 are inconsistent and do
not correspond to extrema of � (unless the fields are con-
strained by additional physics which fixes the strength of
the singularity [6]). For singular spaces the remarkable
property that a vanishing cosmological constant is singled
out originates from the extremum conditions which go
beyond the higher-dimensional field equations.
Additional ‘‘brane constraints’’ [6] are due to Eq. (4) and
to similar boundary terms for the metric. For regular
geometries, the brane constraints are obeyed automatically.
We restrict our discussion to solutions with local four-

dimensional gravity, in the sense that an effective four-
dimensional action can be expanded in powers of the
curvature tensor. In this case, an extremum of the higher-
dimensional action must also be an extremum of the ef-
fective four-dimensional action. The latter is obtained from
� [Eq. (1)] by inserting given solutions of the higher-

dimensional field equations �ðyÞ, �ðyÞ, and gðDÞ

�ðyÞ accord-
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ing to the ansatz (7) and integrating over the internal

coordinates y. In particular, we can consider �ð4Þ as a

functional of the variable gð4Þ��:

�ð4Þ ¼
Z
x
ðgð4ÞÞ1=2W; W¼V��2

2
Rð4Þþ ~HðRð4Þ

����Þ: (8)

Here we identify V with the effective four-dimensional
cosmological constant and � with the effective Planck
mass (in the Jordan frame), and ~H contains higher or-
ders of the four-dimensional curvature tensor. For a maxi-
mally symmetric four-dimensional space, one finds for the
four-dimensional Lagrangian W

W ¼ V � 2��2 þ�2Ĥð�Þ; lim
�!0

�Ĥð�Þ ¼ 0: (9)

Both V and � depend on the geometry of internal space and
on the warping.

In addition to gð4Þ�� wemay also keep the normalization of

� and gðDÞ

� as free variables. These degrees of freedom can

be expressed in terms of a characteristic length scale l for
internal space and a characteristic average �� for �:Z

y
ðgðDÞÞ1=2�2 ¼ lD;

Z
y
ðgðDÞÞ1=2��2 ¼ lD ��2: (10)

We are interested in extrema where both l and �� are finite
and nonzero. For the metric (7) the d-dimensional curva-

ture scalar obeys R̂ ¼ RðintÞ þ Rð4Þ=� such that

�2 ¼ lD ��2 � 2 ~Gl�2; ~G ¼ l2
Z
y
ðgðDÞÞ1=2�G: (11)

Here G arises from the expansion of F in the four-

dimensional curvature tensor FðR̂�̂ �̂ �̂ �̂Þ ¼ FðRðintÞ
�̂ �̂ �̂ �̂Þ þ

GRð4Þ=�þ � � � , and ~G is dimensionless. Similarly, we
can write

V ¼ ~Q ��2lD�2 þ ~Fl�4; (12)

with dimensionless quantities

~Q ¼ 1

2
���2l2�D

Z
y
ðgðDÞÞ1=2�2ð�@
�@
�� �2RðintÞÞ;

~F ¼ l4
Z
y
ðgðDÞÞ1=2�2FðRðintÞ

�̂ �̂ �̂ �̂Þ:
(13)

Equation (9) yields for arbitrary quasistatic geometries

W¼ ��2½ ~QlD�2�2�lD�þ ~F

l4
þ4 ~G�

l2
þ�2Ĥð�l2Þ: (14)

An extremum of � must be an extremum of Wð ��; lÞ,
provided that gð4Þ�� and therefore � are kept fixed. Stability

requires ~Q � 0, ~F � 0, �2 > 0, and the absence of nega-
tive eigenvalues for the second variations ofW. For j�j �
�2 we can further neglect the term�2Ĥ. A general analysis
of the stable extrema of W shows two ‘‘phases.’’ A ‘‘flat

phase’’ with� ¼ 0 is possible for all ~F, ~Q, and ~G. For ~F >
0 it occurs, however, for l ! 1. A ‘‘nonflat phase’’ with

� � 0 is possible only in a restricted range of ( ~F, ~Q, ~G),

with ~G< 0, ~Q> 0, and requires �� ¼ 0. All stable extrema
with �� > 0 belong to the flat phase with � ¼ 0.

Furthermore, a finite volume l <1 requires ~F ¼ ~Q ¼ 0.
The solutions in the flat phase remain intact if we add the

term �2Ĥ. It is conceivable that in the presence of Ĥ � 0
new stable extrema become possible with j�j � �2. In
units of the scale lD ��2, the possible values of � show a
gap between zero and a value of order unity.
The phase structure of the possible stable extrema of �

has important consequences for the stability of � with
respect to parameter changes of the higher-dimensional
action. Let us start with a specific form of � for which
solutions in the flat phase with � > 0, l <1 are explicitly
known. An example is a polynomial F which contains at

least two powers of R̂�̂ �̂ and direct product solutions of

four-dimensional Minkowski space and Ricci-flat internal

space, for which� ¼ 0, ~F ¼ ~Q ¼ 0 can be easily verified.
We next modify � by a small change 
F of the
�-independent term. Either no extremum with � > 0, l <
1 exists anymore in the presence of 
F (this could happen
if 
F induces an instability for all such solutions), or the
modified � still admits stable extrema with � > 0, l <1.
Then the flat phase persists and � ¼ 0 remains pre-
served—a jump to a value � � �2 is not possible for a
continuous change of F (except for special points where �2

vanishes). We may evaluate the contribution of 
F to ~F,
i.e., 
 ~F, for the original extremum of � (i.e., in the absence
of 
F). It is not necessary that 
 ~F vanishes. If not, the
internal geometry and�ðyÞ, �ðyÞwill readjust such that, for
the new extremum in the presence of the term 
F, one
again finds ~F ¼ 0. This procedure can be continued to
‘‘explore’’ the parameter space of effective actions for
which stable extrema with � > 0, l <1 exist—they all
have � ¼ 0. Typically, this parameter space covers arbi-
trary F which are consistent with general stability criteria,
since flat internal space with finite �D and � ¼ �0 always
provides for a possible extremum with � > 0, l <1.
The readjustment of ~F to zero can be associated with a

readjustment of the cosmological constant. [Note that the

readjustment of ~Q follows automatically, since for any

configuration (7) with gð4Þ�� ¼ ��� the field equation (2)

for � and the extremum condition (4) imply ~Q ¼ 0 [6].] In
this respect we emphasize an important difference between
higher-dimensional theories and the four-dimensional set-
ting. In general, ~F is a functional of higher-dimensional

fields 
ðyÞ that describe the changes of gðDÞ

� , �, and �. The

extremum condition 
 ~F=

ðyÞ amounts to field equations
with derivatives of 
. Local solutions have free integration
constants which may be adapted to obey ~F ¼ 0. There is
no need for a very special form of ~F½
ðyÞ�. In other words,
we have infinitely many four-dimensional fields in order to
achieve the readjustment. This contrasts with a finite num-
ber of homogeneous four-dimensional fields 
i, where the
conditions @ ~F=@
i ¼ 0, ~F ¼ 0, can be met simultane-
ously only for a special choice of ~F.
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These arguments equally apply for the role of particular
‘‘Casimir contributions’’ to � from some effective four-
dimensional quantum fluctuations or from the QCD con-
densate �QCD or the Fermi scale. In a dilatation symmetric

setting these effects typically are�l�4 and therefore give a
contribution to ~F. In a general covariant setting they there-
fore contribute to F, perhaps in a nonpolynomial form.
Indeed, the ‘‘compactification scale’’ l�1 acts as an effec-
tive ultraviolet cutoff for the validity of a four-dimensional
description and sets the scale for Casimir effects. It also
sets the initial scale for the four-dimensional running of
couplings, such that �QCD � l�1, etc.

We have seen that there are many other contributions to
~F from geometrical degrees of freedom. If a stable extre-
mum with �� > 0, l <1 exists, all of these contributions
must cancel precisely by virtue of the higher-dimensional
field equations, resulting in ~F ¼ 0. Tiny adjustments of
infinitely many four-dimensional scalar fields are sufficient
for this purpose. Typically, such a field A has a mass term
��2A2 and couples linearly to the low energy degrees of
freedom, as �’y’A for the coupling to the Higgs field ’.
A change of ’ ! ’þ 
’ results in a change of V ¼ ��2

of the order 
V � ’3
’ due to quartic interactions �’4,
etc. It is easy to verify that the resulting change 
A�
’
’=� also contributes 
V � ’3
’, allowing for
compensation.

Dilatation symmetry is not expected to be an exact
quantum symmetry. Even for a scale-invariant classical
action, the missing dilatation invariance of the measure
in the functional integral induces a dilatation anomaly. The
issue of the dilatation anomaly can be understood by
performing a Weyl scaling of the d-dimensional metric

ĝ�̂ �̂ ¼ w2~g�̂ �̂; w ¼ Md�
�2=ðd�2Þ. With ~R the curvature

scalar computed from the metric ~g�̂ �̂ in the Einstein frame,

the effective action (1) reads in the new fields

� ¼
Z

~g1=2
�
�Md�2

d

2
ð ~R� ~�@�̂ ln�@�̂ ln�Þ þ ~F

�
; (15)

where ln� stands for lnð�=Mðd�2Þ=2
d Þ. In the Einstein frame

(15) the dilatations act as shifts in the dilaton field 
�
Md ln�, while ~g�̂ �̂ is invariant. Quantization in the

Einstein frame preserves the dilatation symmetry as an
exact quantum symmetry, since a functional measure for

 is invariant under a global shift 
 ! 
þ 
. However,
we propose that the functional measure is defined in terms
of the original variables � and ĝ�̂ �̂. The Weyl scaling to a

measure for 
 and ~g�̂ �̂ involves a Jacobian �wf for every

space-time point x̂ and therefore contributes to � an
anomalous piece �an ��x̂ ln�

2. Regularization of the
sum over all space-time points introduces a mass scale �

which explicitly breaks dilatation symmetry: �an ¼R
x̂ ĝ

1=2�dðln�2 þ constÞ, where ĝ1=2 arises from the re-

quirement of general covariance of the regularization.

To demonstrate the effect of the anomaly we add in the

bracket in Eq. (1) a term V̂an ¼ �d. After dimensional
reduction the anomaly adds to V in Eq. (8) a term Van ¼
�dlD. In order to discuss cosmological solutions it is
convenient to perform a four-dimensional Weyl scaling
with w4 ¼ M=�, such that in terms of the new metric for

the Einstein frame one has �ð4Þ ¼ R
g1=2ð�M2R=2þUÞ.

For ~F ¼ ~Q ¼ 0 the effective potential reads

U ¼ M4Van�
�4 ¼ M4�D=2ð�=�Þd; (16)

where we have introduced � ¼ �2l2 ¼ !2 � 2 ~G. Realistic
asymptotic solutions should lead to a constant value !.
Cosmology corresponds then to an increase of � for t !
1, resulting in a decrease of the effective cosmological
constant �U=M2. This yields a typical quintessence cos-
mology, with an exponentially decreasing potential for the
cosmon field ’� lnð�=MÞ [1]. The effect of the anomaly
vanishes for t ! 1 such that the system tends indeed to
one of the quasistatic extrema of a dilatation symmetric
effective action.
We conclude that a cosmological runaway towards a

fixed point, where dilatation symmetry is realized dynami-
cally on a quantum level, offers exciting prospects for a
solution of the cosmological constant problem. The
asymptotic value of the cosmological constant vanishes
for a wide class of dilatation symmetric asymptotic states,
without any tuning of parameters.
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