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We describe a new instability that may trigger the global unpinning of vortices in a spinning neutron

star, leading to the transfer of angular momentum from the superfluid component to the star’s crust. The

instability, which is associated with the inertial r modes of a superfluid neutron star, sets in once the

rotational lag in the system reaches a critical level. We demonstrate that our simple model agrees well with

the observed glitch data. This new idea should stimulate work on more detailed neutron star models,

which would account for the crustal shear stresses and magnetic field effects we have ignored.
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Introduction.—Even though pulsars are generally very
stable rotators, in some cases with an accuracy that rivals
the best terrestrial atomic clocks, many systems exhibit a
variety of timing ‘‘noise.’’ The most enigmatic features are
associated with the so-called glitches, sudden spin-up
events followed by a relaxation towards steady long-term
spin-down. Several hundred glitches, with magnitude in
the range ��c=�c � 10�9 � 10�6 where �c is the ob-
served rotation frequency, have now been observed in over
100 pulsars [1]. The archetypal glitching pulsar is Vela,
which exhibits regular large glitches. Glitches have also
been reported in several magnetars [2] as well as one, very
slowly rotating, accreting neutron star [3].

Despite the relative wealth of observational data our
theoretical understanding of glitches has not advanced
considerably in recent years. The standard ‘‘model’’ for
large pulsar glitches envisages a sudden transfer of angular
momentum from a superfluid component to the rest of the
star [4], which includes the crust (to which the pulsar
mechanism is assumed rigidly attached) and the charged
matter in the core. A superfluid rotates by forming a dense
array of vortices, and the vortex configuration determines
the global rotation. The key idea for explaining glitches is
that, if the superfluid vortices are pinned to the other
component, a rotational lag builds up as the crust spins
down due to electromagnetic braking. Once the rotational
lag reaches some critical level, the pinning breaks. This
allows the vortices to move, which leads to a transfer of
angular momentum between the two components and the
observed spin-up of the crust.

Most theoretical work has focused on either the strength
of the vortex pinning [5,6] or the post-glitch evolution [7].
There have not been many suggestions for the mechanism
that triggers the glitch in the first place. It is generally
expected that this role will be played by some kind of
instability, but there are few truly quantitative models.
The results presented in this Letter change the situation
dramatically. We present evidence for a new instability,
acting on the inertial modes of a rotating superfluid star,
that sets in beyond a critical rotational lag. The predictions

of this model agree well with the observational data mak-
ing it plausible that this mechanism provides a missing
piece in the pulsar glitch puzzle.
Inertial mode analysis.—Wewant to improve our under-

standing of the hydrodynamics associated with a pulsar
glitch. Even though this should be a key issue, it has not
been discussed in detail previously. In principle, one
should be able to express the dynamics in terms of global
oscillation modes of the system. In this Letter we present
the first ever results for inertial modes of neutron star
models with the two main features required for the stan-
dard glitch models, a superfluid neutron component that
rotates at a rate different from that of the crust and
‘‘pinned’’ neutron vortices.
We use the standard two-fluid model for superfluid

neutron stars (see for example [8]), identifying the two
components with the neutron superfluid and a conglomer-
ate of all charged particles (the ‘‘protons’’). In the follow-
ing, the index x ¼ fn; pg identifies the distinct fluids. Our
aim is to model small amplitude oscillations with respect to
a background configuration where both fluids rotate rigidly
with (parallel) angular velocities vi

x ¼ �ijk�x
jxk and where

the magnitudes are different, �n � �p. The linear pertur-

bations of this system (assuming a time dependence
� expði�tÞ) are, in the inertial frame, described by the
two coupled Euler equations,

ði�þ vj
nrjÞ�vi

n þ �vj
nrjv

i
n þri�c n ¼ �fimf ; (1)

ði�þvj
prjÞ�vi

pþ�vj
prjv

i
pþri�c p¼��fimf=xp: (2)

Here �c x ¼ � ~�x þ �� represents the sum of the per-
turbed specific chemical potential and gravitational poten-
tial. We have also introduced xp¼�p=�n. This ratio,

which is roughly equal to the proton fraction, is assumed
constant throughout the star. For simplicity, we assume that
the two fluids are incompressible, which means that
ri�v

i
x ¼ 0. In general, the two fluids are coupled

(i) chemically, (ii) gravitationally, (iii) via the entrainment
effect, and (iv) by the vortex mediated mutual friction fimf .
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For clarity, we will ignore the entrainment in the present
analysis. A detailed discussion of how the entrainment
affects our results will be provided elsewhere.

For the inertial modes, the main coupling mechanism is
provided by the mutual friction force. The general expres-
sion for this force is [9],

fmf
i ¼ B�ijk�

kml!̂j
n!n

mw
np
l þB0�ijk!

j
nwk

np; (3)

where wi
np ¼ vi

n � vi
p and !i

n ¼ �ijkrjv
n
k . A ‘‘hat’’ de-

notes a unit vector. When the two fluids are not corotating,
the perturbed force �fimf is quite complex [10]. The form

(3) for fimf results from balancing the Magnus force that

acts on the neutron vortices and a resistive ‘‘drag’’ force
between the vortices and the charged fluid. Representing
the drag force by a dimensionless coefficient R, one finds
that B0 ¼ RB ¼ R2=ð1þR2Þ. The range of values that
R takes in a neutron star is not well known. The standard
assumption has been that the drag is weak [11], which
means that B0 � B � 1. Then the second term in (3)
has no effect on the dynamics. However, it may well be
the opposite limit that applies. The vortices in a neutron
star core may experience a strong drag force if their
interaction with the magnetic fluxtubes is efficient [12–
14]. The drag on the superfluid in the crust may also be
strong due to vortex ‘‘pinning’’ by the lattice nuclei. Even
though the current evidence [5,6] favors weak crustal pin-
ning, the existence of strong pinning regions has not been
completely ruled out. In these cases one must consider the
strong coupling limit R � 1, i.e., B � 0 and B0 � 1.

The hydrodynamical equations (1) and (2) allow for a
rich set of oscillation modes. Here we focus on a subset of
the inertial modes, the purely axial r modes. The r modes
have attracted attention since they may suffer a
gravitational-driven instability [15]. They have been
studied in superfluid neutron stars previously [16–18],
but these studies have not accounted for both mutual
friction and a rotational lag. Expressed in terms of spheri-
cal harmonics, the r mode velocity fields take the form

�vi
x ¼

�
� imUx

l Y
m
l

r2sin2�
êi� þ

Ux
l @�Y

m
l

r2 sin�
êi’

�
ei�t: (4)

In the corresponding single fluid problem such purely axial
solutions exist, corresponding to a single l ¼ m multipole.
The solution (4) satisfies the continuity equations auto-
matically, which means that we only have to consider the
two Euler equations. Inserting (4) in (1) and (2) and
eliminating �c x one arrives at two equations for Ux

l . As

in the single fluid inertial mode problem, these relations
feature couplings between different l multipoles. In the
present problem these couplings are further complicated
by the presence of �fimf . As a result, one would expect the

problem to be difficult to solve. Remarkably, this is not the
case. It turns out that, even when �n � �p, there exists a

simple l ¼ m solution of the form Ux
m ¼ Axr

mþ1. This
solution is exact at leading order in rotation and for all
values ofR. The amplitudes Ax follow from the solution of

a 2� 2 algebraic system, the determinant of which pro-
vides the dispersion relation for the mode frequency.
A new superfluid instability.—The strong coupling limit,

B ¼ 0 andB0 ¼ 1, provides a good illustration of the main
new result. In this case we have, in terms of the dimen-
sionless parameters � ¼ ð�þm�pÞ=�p and � ¼ ð�n �
�pÞ=�p, the two frequency solutions

�1;2 ¼ �ð1� xp þ ��D1=2Þ=ðmþ 1Þxp; (5)

where

D ¼ ð1þ xpÞ2 þ 2�½1þ xpf3�mðmþ 1Þg� þOð�2Þ:
(6)

For the amplitudes we find An=Ap ¼ 2ð1þ�Þ=ðmþ 1Þ�.
Let us focus on the short length scale modes. Taking

m � 1 and recalling that xp and � are both small (gen-

erally � � xp), we find that one of the r mode solutions

becomes unstable (Im½��< 0) for m>mc, where

mc � ð2xp�Þ�1=2 � 320 (7)

for the typical value � ¼ 10�4. Here, and in the following,
we use xp ¼ 0:05. Form � mc the instability growth time

scale �grow ¼ 1=ð�pIm½��Þ is well approximated by

�grow � ðP=2	Þðxp=2�Þ1=2 � 0:25ð�=10�4Þ�1=2 s; (8)

where we have taken P ¼ 2	=�p ¼ 0:1 s as a typical

observed spin period (we associate the charged component
with the crust, �p ¼ �c). We see that the instability can

grow rapidly, on a time scale comparable to the rotation
period of the star.
Although we cannot yet claim to understand the detailed

nature of this new r mode instability, we have some useful
clues. We find that the unstable modes are such that
jAn=Apj � xp. Thus, the fluid motion is predominantly in

the proton fluid. There should also be a close connection
with the short wavelength instability that we recently dis-
covered for precessing superfluid stars [19]. In that case,
the result followed from a local plane-wave analysis of the
inertial modes. An attempt to link these two results would
be useful. Finally, since the present system has two distinct
rotation rates one might expect the instability to belong to
the general two-stream class [18]. Such instabilities are
generic in multifluid systems. The intuitive condition for
such an instability dictates that the mode’s pattern speed
�Reð�Þ=m should lie between�n and�p [18]. This trans-

lates intom>
ffiffiffi
2

p
mc, which is, indeed, satisfied for most of

the instability regime.
In order for the new instability to affect the dynamics of

realistic neutron stars it must (at least) overcome viscous
damping. For young and mature neutron stars, dissipation
is dominated by shear viscosity due to electron-electron
collisions [20]. For a uniform density star with M ¼
1:4M	 and R ¼ 10 km (the values used in the following)
the corresponding viscosity coefficient is 
ee �
2:7� 1020T�2

8 g=cm s, where T8 ¼ T=108 K represents
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the core temperature [21]. We can use the standard energy-
integral approach to estimate the viscous damping time
scale. In fact, since jAnj � jApjwe can use existing results
for r modes of uniform density stars [22], remembering
that shear viscosity only acts on the proton fluid. Thus, a
simple calculation leads to �sv � 6� 104T2

8=m
2 s for our

canonical parameters. The unstable modes will grow fast
enough to overcome viscous damping if �grow < �sv. This

leads to

m< 500ð�=10�4Þ1=4ðP=0:01 sÞ�1=2T8; (9)

which gives the range of unstable m modes. Since the
instability sets in when m>mc we conclude that the
system becomes unstable once it reaches the critical lag

�c � 6� 10�5ðP=0:1 sÞ2=3T�4=3
8 : (10)

Making contact with observations.—Within a two-
component model, it is straightforward to estimate the
critical lag required to explain the observations.
Assuming that angular momentum is conserved in the
process, one must have Ic��c � �Is��s, where Is and
Ic are the two moments of inertia, while ��s and ��c

represent the changes in the spin frequencies. The glitch
data suggest that about 2% of the total spin-down is re-
versed in the glitches [23], indicating that Is=Ic � 0:02. In
order to permit Vela-sized glitches with ��c=�c � 10�6

we need (assuming �c ¼ �s after the event)

�g � ðIc=IsÞð��c=�cÞ � 5� 10�4: (11)

The observational estimate of the lag �g at which large

glitches occur is similar to our estimate (10) for the onset of
the superfluid r mode instability. We do not think this is a
coincidence. Even though it is difficult to compare the
parameters of our two-fluid neutron star model to the
global quantities used in the phenomenological discussion
directly, it is clear that our new instability has the features
expected of a glitch trigger mechanism. It operates in the
strong drag limit, where vortices are effectively pinned to
the charged component. As long as the system is stable, a
rotational lag should build up as the crust spins down. Once
the system evolves beyond the critical level (10) a range of
unstable r modes grow on a time scale of a few rotation
periods. We cannot say what happens when these modes
reach large amplitudes, but it seems inevitable that the fluid
motion associated with the instability will break the vortex
pinning, allowing a glitch to proceed.

Let us compare the ‘‘predictions’’ of our model to the
data for pulsars exhibiting large glitches. To do this, we
estimate the maximum glitch size allowed if �g ¼ �c,

assuming a completely relaxed system and Is=Ic ¼ 0:02.
Since we do not have temperature data for most glitching
pulsars, we estimate T by combining the heat blanket
model from [24] with a simple modified URCA cooling
law. Calibrating this model to the Vela pulsar, for which

T � 6:9� 107 K [25], we find T8 � 3:3ðtc=1 yrÞ�1=6 K.

Here tc ¼ P=2 _P is the characteristic pulsar age. The re-
sults are shown in Fig. 1. This Figure shows that our model
does well in predicting the maximum glitches one should
expect. The data are consistent with the idea that a system
needs to evolve into the instability region before a large
glitch happens. It should be noted that, even though the
instability first appears atm ¼ mc, the growth time is much
longer than the estimated �grow until m> 1:2mc or so. It is

also interesting to note that two of the systems with actual
temperature data [25], Vela and PSR B1706-44, both sit on
them � 1:6mc curve in Fig. 1. Moreover, it is worth noting
that �grow is shorter than the currently best resolved glitch

event even for �� 10�7 (e.g., for the Crab). Finally, it is
worth keeping in mind that since we are assuming that the
system is completely relaxed in each individual event, our
estimates provide an upper limit on the observed glitches.
In reality the rotational lag may only be partially relaxed,
which would explain why some glitches are smaller.
Discussion.—We have described a new instability that

may operate in rotating superfluid neutron stars. We have
demonstrated that this instability sets in at parameter val-
ues that compare well with those inferred from pulsar
glitches. This suggests that this kind of instability may be
the mechanism that triggers large pulsar glitches. This
model is consistent with a number of observed properties
of glitching pulsars: (i) Adolescent pulsars, like Crab and
PSR J0537-69, should only exhibit small amplitude
glitches. For fast spin and a relatively high temperature
the instability sets in at smaller values of �. (ii) More
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FIG. 1 (color online). The maximum glitches predicted from
(10) are compared to observations. The mc curve represents the
onset of the superfluid instability (the instability region is gray,
and for 2:5mc there is a wide range of unstable inertial modes)
and a glitch involving the relaxation of 2% of the total moment
of inertia (corresponding curves for 1% and 0.5% are also
shown). The circles are systems with temperature data (taken
from [25]). The triangles represent systems for which T is
estimated. The glitch data is taken from [1,27].
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mature and slower spinning neutron stars have colder cores
which means they can produce larger glitches, provided
the required � can build up (cf. PSR J1806-21 with
��c=�c � 1:6� 10�5 [26]). Since �c increases as the
star ages one would expect neutron stars to cease to glitch
eventually. (iii) For any glitch mechanism that relies on a
critical spin lag between a superfluid component and the
rest of the star, it is easy to estimate the time interval tg
between successive glitches. Assuming that each glitch
relaxes the system completely (see comment earlier), we
estimate tg � 2�gtc * 2�ctc. For Vela we then find tg *

750 d, which compares well with the observed averaged
time of about 1000 d. The most regular known glitcher,
PSR J0537-69, has an average interglitch time of about
120 d [27]. In the absence of temperature data we use the
simple cooling law for this object and find tg * 90 d.

Again, the agreement with the observations is good, and
consistent with the notion that the system evolves into the
unstable regime before a glitch occurs. One should also
remember that we have assumed perfect vortex pinning in
between the glitch events. A more detailed analysis would
account for vortex creep [7]. This will tend to increase the
time it takes to build a given rotational lag. This may bring
the estimates closer to the observed interglitch times.
(iv) There is no reason why the instability should not
operate in all spinning neutron stars in which a rotational
lag builds up. In particular, one may expect accreting
neutron stars to ‘‘glitch’’ occasionally. So far, there has
only been one suggested event, in the slowly rotating
transient KS 1947þ 300 [3]. For this system our model
suggests (combining P ¼ 18:7 swith T � 108 K, a typical
temperature for an accreting star) a maximum glitch of
��c=�c � 4� 10�5. This is close to the suggested ob-
served glitch with��c=�c � 3:7� 10�5 [3]. Such events
should, of course, be extremely rare.

Since we have considered the nonmagnetic inertial
mode problem, our model does not apply (without modi-
fication) to magnetars. It is nevertheless interesting to
consider these systems. Given typical magnetar parameters
(P� 10 s, T � 109 K), we would not expect these objects
to exhibit large glitches. Yet, they do [2]. Perhaps these
glitches involve a larger fraction Is=Ic?

A key question for the future concerns the presence or
absence of this kind of instability in a more realistic neu-
tron star model. It is clear that both magnetic tension and
crustal shear stresses may alter the inertial modes that we
have considered here significantly. What is not at all clear
is whether the modes of a more complex multifluid system
will suffer an analogous instability. The answer to this
question requires a detailed mode calculation. This prob-
lem is a serious challenge, but there is some evidence that
this kind of instability may operate in a magnetized star
[28].

The results presented in this Letter are promising, but we
are still far away from a complete understanding of this
new mechanism. Future work needs to consider more de-

tailed neutron star models. We need to understand the local
mutual friction parameters and the nature of vortex pin-
ning. We should also make more detailed attempts at
understanding the observations. Finally, we need to under-
stand the nonlinear development of the instability. This
problem can perhaps be studied with numerical simula-
tions [29]. Ultimately, one would hope to arrive at a truly
quantitative model for pulsar glitches.
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