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We consider schemes for secret key distribution which use as a resource correlations that violate Bell

inequalities. We provide the first security proof for such schemes, according to the strongest notion of

security, the so-called universally composable security. Our security proof does not rely on the validity of

quantum mechanics, it solely relies on the impossibility of arbitrarily fast signaling between separate

physical systems. This allows for secret communication in situations where the participants distrust their

quantum devices.
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In an experimental setup where a Bell inequality [1] is
violated, one has the certainty that the outcomes of some
local measurements are not determined beforehand. This
limits the degree of correlation between such outcomes and
other systems not involved in the experiment. It also limits
the knowledge about these outcomes that a distant party
can have. This fundamental piece of our understanding of
physical reality can be exploited for implementing
information-theoretic tasks. For instance, in this Letter
we show that a secret key generated from the outcomes
of Bell-violating measurements is secure. This reasoning is
independent of quantum mechanics, the only key assump-
tion is the impossibility of arbitrarily fast signaling be-
tween separate systems.

The first scheme for generating secret key from Bell-
violating correlations was presented in [2], and was fol-
lowed by others [3,4]. All these schemes where presented
with partial security proofs. The results presented in this
Letter, complemented with the ones in [5], provide a
general security proof without assumptions (apart from
no signaling) for all these schemes. We use the strongest
security criterion, the so-called universally composable
security [6], which warrants that key distribution is secure
in any context. Our methods are very general, and can be
adapted to other Bell-inequality-based key-distribution
schemes.

No signaling.—Consider two parties, Alice and Bob,
each having a physical system which can be measured
with different observables. Let aðbÞ be the outcome when
Alice (Bob)’s system is measured with one of the observ-
ables parametrized by xðyÞ, with joint conditional proba-
bility distribution denoted by Pa;bjx;y. We say that Pa;bjx;y is
a nonsignaling distribution if the marginals depend only on
their corresponding observables, that is Pajx;y ¼ Pajx and

Pbjx;y ¼ Pbjy for all a, b, x, y [7]. It is clear that if one of

these conditions is not satisfied, then arbitrarily fast signal-
ing is possible.

Nonlocality.—The distributions that can be written as

Pa;bjx;y ¼
X
�

P�Pajx;�Pbjy;� (1)

are called local, and satisfy all Bell inequalities [7]. In the
binary case (a, b, x, y 2 f0; 1g) all Bell inequalities are
equivalent to the Clauser-Horne-Shimony-Holt (CHSH)
inequality [8]. For what follows, it is convenient to write

the CHSH inequality as hCHSHjPa;bjx;yi �
ffiffiffi
2

p
, where the

vector

jCHSHi ¼ 1

4
ffiffiffi
2

p
1 5 1 5
5 1 5 1

1 5 5 1
5 1 1 5

0
BBBB@

1
CCCCA (2)

contains the coefficients of the inequality, and the vector

jPa;bjx;yi ¼
P0;0j0;0 P0;1j0;0 P0;0j0;1 P0;1j0;1
P1;0j0;0 P1;1j0;0 P1;0j0;1 P1;1j0;1

P0;0j1;0 P0;1j1;0 P0;0j1;1 P0;1j1;1
P1;0j1;0 P1;1j1;0 P1;0j1;1 P1;1j1;1

0
BBBB@

1
CCCCA (3)

contains the probabilities for all experimental settings. (We
arrange the components of these vectors in a matrix for the
sake of clarity.) Notice that in this form, the lower the
quantity hCHSHjPa;bjx;yi the larger the violation. The dis-

tribution attaining maximal violation (hCHSHjPa;bjx;yi ¼
1=

ffiffiffi
2

p
) is the so-called PR box [9], which can be considered

the maximally nonlocal (nonsignaling) distribution. The
correlations generated by measuring quantum systems are

constrained by Cirel’son’s bound hCHSHjPa;bjx;yi �
2�1=23� 1 � 1:121 [10].
Privacy amplification.—Privacy amplification (PA) is

the procedure by which a partially secret Nr-bit string a
(the raw key) is transformed into a highly secret Ns-bit
string k (the secret key) [11]. Usually, the secret key is
shorter than the raw key (Ns < Nr), which is the price for
the gain in privacy. The function implementing this trans-
formation hðaÞ ¼ k is called hash function. It is usually the
case that the hash function has to be generated randomly
after the raw key a has been obtained, but in our scheme, h
is fixed from the beginning and known to everybody,
including the eavesdropper (Eve). An ideal secret key is
a uniformly distributed random variable k which is un-
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correlated with the rest of the universe (Eve). The infor-
mation held by Eve is encoded in the state of a physical
system, which can be measured with one of many different
observables, parametrized by z. If Pejz is the distribution

for the outcomes when this system is measured with the
observable z, then the distribution of an ideal secret key is
Pideal
k;ejz ¼ 2�NsPejz. Usually, the real secret key generated by

PA is not guaranteed to be an ideal secret key, Pk;ejz �
2�NsPejz.

In general, PA constitutes a subroutine within crypto-
graphic protocols, which use a secret key as an ingredient
(an example being the encryption of messages). It is desir-
able that the result obtained when any of these protocols is
fed with the real secret key, is the same as if fed with an
ideal secret key, with arbitrarily high probability. If this is
the case, then we say that PA is universally composable,
because it is secure in any context. Clearly, this happens if
the real and ideal secret keys are indistinguishable.

The most general strategy for distinguishing the bipartite
states Pk;ejz (the real key) and 2�NsPejz (the ideal key)

consists of performing joint measurements on the key
and Eve’s system. The no-signaling formalism alone does
not say anything about joint measurements. However, the
key is a classical system which can be observed without
disturbing the global state. Therefore, the most general
strategy is to read k and chose an observable z depending
on its value. It is well known that the probability of guess-
ing correctly with the optimal strategy is

pcorrect ¼ 1

2
þ 1

4

X
k

max
z

X
e

jPk;ejz � 2�NsPejzj: (4)

Notice that the maximization on z depends on k. When (4)
is close to 1=2, the optimal strategy for distinguishing the
real from the ideal key is as good as a random guess—this
is the security condition that we consider.

In key distribution from Bell-violating correlations,
Alice has N systems, Bob has N systems and, without
loss of generality, Eve has one ‘‘big’’ system, jointly dis-
tributed according to an arbitrary (unknown) Pa;b;ejx;y;z.
(Bold symbols correspond to bit-string variables.) It is
usually assumed that this is a (2N þ 1)-partite nonsignal-
ing distribution [5] (i.e., the marginals only depend on their
corresponding observables), however, we are able to pro-
ceed with a weaker assumption. If the secret key is a
function of Alice’s string k ¼ hðaÞ, then Bob’s N systems
can be considered as a single ‘‘big’’ system, that is, no
signaling among Bob’s systems is not required in our
proof. We refer to this assumption as ‘‘(N þ 2)-partite no
signaling.’’ According to [12], the even weaker assumption
of 3-partite no signaling (where Alice’s N systems are also
considered as single one) is insufficient to warrant security.
Of these N pairs of systems, NrðNr < NÞ are used for
generating the raw key, and the rest are used to estimate
how much nonlocality is shared by Alice and Bob [5]. In
the large-N limit, Nr is equal to N up to terms sublinear in
N—this is denoted by Nr � N.

The following result establishes the security of Alice’s
key k ¼ hðaÞ when a is generated by measuring Nr

of Alice’s systems with the observable x ¼ 0. Of course,
it is necessary that the correlations shared by Alice
and Bob Pa;bjx;y have a sufficiently small value of

hCHSHj�Nr jPa;bjx;yi, or in other words, are sufficiently

nonlocal. However, the goal of key distribution is that
both Alice and Bob hold the secret key k. Later we address
this problem.
Main result.—For almost all functions h: f0; 1gNr !

f0; 1gNs and any (Nr þ 2)-partite nonsignaling distribution
Pa;b;ejx;y;z, the random variable k ¼ hðaÞ satisfies

X
k

max
z

X
e

jPk;ejx¼0;z � 2�NsPejzj

� ffiffiffi
2

p
Nsþ

ffiffiffiffi
Nr

p
hCHSHj�Nr jPa;bjx;yi; (5)

where 0 is the zero vector.
Here and in the rest of the Letter we say that ‘‘almost all

functions have a particular property’’ if when randomly
picking a function h with uniform distribution over all
functions h: f0; 1gNr ! f0; 1gNs then the probability that h
does not have that particular property is lower than

2 expð5Nr � 2
ffiffiffiffi
Nr

p
=4Þ. The above result is also true for

any x � 0, but for simplicity we consider only the case
x ¼ 0, which is sufficient for key distribution.
When the given correlations Pa;bjx;y are generated by

measuring quantum systems Cirel’son’s bound implies
hCHSHj�Nr jPa;bjx;yi> 1, which prevents the right-hand

side of (5) to be small. Hence, this simple scheme does
not work with quantum correlations. This problem is
solved by the Barrett-Hardy-Kent (BHK) protocol, which
yields large secure secret keys. The BHK protocol is
analyzed below. Now, we proceed to prove the main result,
and start by stating two lemmas, the first is shown in [5,13]
and the second is shown below.
Lemma 1.—For any (Nr þ 1)-partite nonsignaling dis-

tribution Pa;bjx;y we have Pajx¼0 ¼ h�ajPa;bjx;yi, where

j�ai ¼ j�a1i � � � � � j�aNr
i and

j�0i ¼ 1

8

1 �3 1 5
5 1 � 3 1

1 �3 5 1
5 1 1 �3

0
BBBB@

1
CCCCA;

j�1i ¼ 1

8

1 5 1 �3
�3 1 5 1

1 5 � 3 1
�3 1 1 5

0
BBBB@

1
CCCCA:

Lemma 2.—For any given function h: f0; 1gNr ! f0; 1gNs

and any k 2 f0; 1gNs , define Ak ¼ h�1ðkÞ and j�Ak
i ¼P

a2Ak
j�ai. Almost all functions h satisfy

j2Ns j�Ak
i � 4�Nr j10sij � ffiffiffi

2
p

Nsþ
ffiffiffiffi
Nr

p
jCHSHi�Nr ; (6)

for all k, where the symbol j � j denotes entrywise absolute
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value, the symbol � denotes entrywise less or equal than,

and j10si 2 R16Nr has all entries equal to one.
Proof of the main result.—Let h be any of the functions

which satisfies (6), and for each k, let j�Ak
i be the vector

defined in Lemma 2. Using Pkjx¼0 ¼ h�Ak
jPa;bjx;yi, the

convexity of the absolute-value function, the inequality (6),
and the fact that the marginal for a, b cannot depend on z,
we have
X
k

max
z

X
e

PejzjPkjx¼0;e;z � 2�Ns j

� X
k

max
z

X
e

Pejzjh�Ak
j � 2�Ns�2Nrh10sjjjPa;bjx;y;e;zi

¼ ffiffiffi
2

p
Nsþ

ffiffiffiffi
Nr

p
hCHSHj�Nr jPa;bjx;yi; (7)

which is precisely (5). h
Proof of Lemma 2.—Within this proof, the entries of any

vector j�i 2 R16Nr are labeled as �ða;b;x; yÞ. Also, for
any pair of bit-strings x, y: (i) the string x � y is the bitwise
product, (ii) the string x � y is the bitwise XOR, and (iii) the
integer kxk is the number of ones in x. Using this notation
we can write the entries of the vector jCHSHi�Nr as

CHSH�Nrða;b;x; yÞ ¼ 2�5Nr=25ka�b�x�yk. Next we prove
inequality (6) for a given k and a given entry (a0, b0, x0,
y0). Let Va ¼ 1 if the string a belongs toAk, and Va ¼ 0
otherwise. If we pick a random function h with uni-
form distribution over the set of all functions, then the
random variables Va are independent and distributed
according to ProbfVa ¼ 1g ¼ 2�Ns , for all a. Let �a ¼
�aða0;b0;x0; y0Þ, M ¼ ka0 � b0 � x0 � y0k, and note that
j�aj � 5M8�Nr for all a. For any J and � � 0 the expo-
nential Chebyshev inequality [14] gives

Prob

�X
a

�aVa�J

�
� exp

�
2�Ns

X
a

ð��aþ�2�2
aÞ��J

�

provided that j�5M8�Nr j � 1. Using
P

a�a ¼ 4�Nr ,P
a�

2
a � 2�5Nr52M, and substituting J ¼ 2�Ns�2Nr þ

2ð
ffiffiffiffi
Nr

p �Nr�NsÞ=24�Nr5M, � ¼ 2ð
ffiffiffiffi
Nr

p þNrþNsÞ=24Nr5�M we ob-
tain

Prob

�X
a

�aVa � 2�Ns�2Nr þ 2ð
ffiffiffiffi
Nr

p �Nr�NsÞ=24�Nr5M
�

� e�2
ffiffiffiffi
Nr

p
=4:

The expression obtained when replacing ‘‘�’’ with ‘‘�’’
above, can be derived in a similar way. Then, with proba-

bility 2e�2
ffiffiffiffi
Nr

p
=4 we have

j2Ns�Ak
ða0;b0;x0; y0Þ � 4�Nr j

� ffiffiffi
2

p
Nsþ

ffiffiffiffi
Nr

p
CHSH�Nrða0;b0;x0; y0Þ: (8)

However, wewant this to hold for all k and all entries (a, b,
x, y). The number of different values of k is 2Ns , and the
number of different entries is 16Nr , then the probability of

(6) is lower than 2 expð5Nr � 2
ffiffiffiffi
Nr

p
=4Þ. h

Error correction and public communication.—It is usu-
ally the case that the given distribution Pa;bjx;y does not

provide perfect correlations between a and b. Hence, if a is
the raw key, Bob has to correct the errors in b before
applying the hash function h. This can be done by Alice
publishing some information about a, and Bob using it for
correcting his errors. This is a standard procedure in quan-
tum key distribution, which is detailed in [5] or [15]. Other
procedures within the key-distribution protocol may also
require public communication. Let theNc-bit string c be all
the information about a that Alice has published during the
protocol. Because c is a function of a, we can still use the
main result (5) in this new setting if we let both, k and c, to
be the outcomes of the function h: f0; 1gNr ! f0; 1gNc 	
f0; 1gNs . However, k and c play different roles: k is the
secret key and c is part of the information owned by Eve.
Hence, the extension of the security condition (5) to the
present setting is

X
k;c

max
z

X
e

jPk;c;ejz � 2�NsPc;ejzj

� 2
ffiffiffi
2

p
NcþNsþ

ffiffiffiffi
Nr

p
hCHSHj�Nr jPa;bjx;yi; (9)

where here and in the rest, the conditioning on x ¼ 0 is
implicit. This inequality is obtained by taking (5) and using
the triangular inequality with the third distribution
2�Nc�NsPejz. The secret key is secure if the right-hand

side of (9) can be made arbitrarily small (as Nr grows).
This happens when the length of the final key is

Ns � log2½hCHSHj�Nr jPa;bjx;yi�2
 � Nc; (10)

up to sublinear terms.
Parameter estimation.—In the unconditional-security

scenario, the honest parties are given N pairs of systems
in a completely unknown global distribution. To perform a
key-distribution protocol, and, in particular, to set the
numbers Ns and Nc, they need to bound some quantities,
as for instance hCHSHj�NjPa;bjx;yi. In order to do so, they

invest some of the given pairs to obtain information about
the distribution Pa;bjx;y of the Nr remaining pairs. More

precisely, they compute the bounds for Ns, Nc for another
distribution P0

a;b;ejx;y;z, which is warranted to be close to the
real (unknown) one (

P
a;b;ejP0

a;b;ejx;y;z � Pa;b;ejx;y;zj � � for

all x, y). This is explained with full detail in [5]. It is shown
in [13] that

X
k;c

max
z

X
e

jPk;c;ejz � 2�NsPe;cjzj

� 2
ffiffiffi
2

p
NsþNcþ

ffiffiffiffi
Nr

p
hCHSHj�Nr jP0

a;bjx;yi þ 2�; (11)

which provides the security bound for the real (unknown)
distribution in terms of properties of any �-close primed
distribution.
The BHK protocol.—The BHK protocol introduced in

[2] and analyzed in [4,5] gives a rate of one secret bit per
singlet (j00i þ j11i). It is remarkable that this protocol,
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where the adversary is only constrained by no signaling,
gives the same rate as if the adversary is constrained by no
signaling plus quantum mechanics. The essential differ-
ence of the BHK protocol is to measure each system with
m � 2 observables, x 2 f1; . . .mg. In this case, instead of
the CHSH, we use the Braunstein-Caves Bell inequality

[16], which can be expressed as hBCjPa;bjx;yi �
ffiffiffi
2

p
, with

jBCi ¼ 1

2
ffiffiffi
2

p
m

1 � 1 �
� 1 � 1

1 � . .
.

� 1

. .
. 1 �

� 1

� 1 1 �
1 � � 1

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

;

(12)

where � ¼ 2mþ 1, and the empty entries represent ze-
roes. Notice that for m ¼ 2 this is equivalent to the CHSH
inequality (2). Following the same methods as above, one
can prove inequalities analogous to (5), (9), (11), and
obtain a key rate as in (10) but with the Braunstein-
Caves Bell inequality

Ns � log2½hBCj�Nr jPa;bjx;yi�2
 � Nc: (13)

This rate formula can be improved by modifying jBCi in
the following way: take the expression (12) and substitute

� by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

p
. The security of this rate will be proven

somewhere else.
If Alice and Bob share singlets or something close to it,

in the estimation process they measure them with all the
observables corresponding to points in the equator of the
block sphere (see [2,4,5] for details), the generated corre-

lations have hBCj�Nr jPa;bjx;yi � 1=
ffiffiffi
2

p
, for large m. The

raw keys a, b are generated by measuring all systems with
the same observable x ¼ 0, then a ¼ b and Nc � 0.
Formula (13) tells that the secret key rate is one secret
bit per singlet: Ns � Nr. This rate cannot be improved
because it is also the optimal rate achievable against a
much weaker (quantum) adversary.

Conclusions.—We show, for the first time, that key
distribution from Bell-violating correlations is secure ac-
cording to the strongest notion of security, the so-called
universally composable security. This provides the possi-
bility of implementing secure cryptographic protocols with
untrusted quantum devices [3]. In this model, Alice and
Bob have to trust some of their apparatuses (classical
computers and the random number generator), but can

distrust the devices for preparing and measuring the quan-
tum systems sent through the channel. The efficiency rate
is slightly lower than the one obtained in standard quantum
key distribution, where trusting the quantum devices is
necessary.
Interestingly, in our scheme, Bell-inequality violation

plays the same role as the min entropy [15] does in stan-
dard quantum key distribution. Specifically, Eqs. (5) and
(10) have a quantum counterpart, obtained with the ex-
change

log 2½hCHSHj�NjPa;bjx;yi�2
 $ HminðajeÞ: (14)

A novelty of our scheme is that randomness extraction,
or equivalently PA, can be performed with a constant hash
function. This contrasts with previous methods for extract-
ing randomness (two-universal hashing [11], extractors,
etc.), which need random functions.
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