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We discuss under what conditions the duality between electric and magnetic fields is a valid symmetry

of macroscopic quantum electrodynamics. It is shown that Maxwell’s equations in the absence of free

charges satisfy duality invariance on an operator level, whereas this is not true for Lorentz forces and

atom-field couplings in general. We prove that derived quantities such as Casimir forces, local-field

corrected decay rates, as well as van der Waals potentials are invariant with respect to a global exchange of

electric and magnetic quantities. This exact symmetry can be used to deduce the physics of new

configurations on the basis of already established ones.
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In the past, studies of phenomena of quantum electro-
dynamics (QED) have often been restricted to purely elec-
tric systems, because effects associated with magnetic
properties are considerably smaller for materials occurring
in nature. Two developments have recently triggered an
increased interest in such magnetic effects: The first was
the suggestion [1] and subsequent fabrication [2] of artifi-
cial metamaterials with controllable electric permittivity "
and magnetic permeability �, where left-handed materials
(LHMs) with negative real parts of " and � are of particu-
lar interest. As had been pointed out already in 1968 [3],
the basis vectors of an electromagnetic wave propagating
inside such a medium form a left-handed triad, implying
negative refraction. Motivated by the progress in metama-
terial fabrication, researchers have intensively studied their
potentials, leading to proposals of a perfect lens with
subwavelength resolution [4] as well as cloaking devices
[5] and predictions of an unusual behavior of the decay of
one or two atoms in the presence of LHMs [6,7].

Another, closely related motivation for considering
magnetic systems was due to the fact that dispersion forces
[8] have gained an increasing influence on micromechan-
ical devices where they often lead to undesired effects such
as stiction [9]. The question naturally arose whether LHMs
could be exploited to modify or even change the sign of
dispersion forces. Forces on excited systems might indeed
be influenced by LHMs [10]. Ground-state forces are not as
easily manipulated because they depend on the medium
response at all frequencies, whereas the Kramers-Kronig
relations imply that LHMs can only be realized in limited
frequency windows. However, the controllable magnetic
properties available in metamaterials can still have a large
impact on dispersion forces: The dispersion forces between
electric and magnetic atoms [11] or bodies [12] differ both
in sign and power laws from those between only electric
ones. Searching for repulsive dispersion forces, interac-
tions of electric or magnetic atoms [13], plates [14,15]
and atoms with plates [16,17] have been studied; more
complex problems such as atom-atom interactions in the

presence of a magnetoelectric bulk medium [18], plate [19]
or sphere [20] have also been addressed. Reductions or
even sign changes of the forces have been predicted for
such scenarios and have been attributed primarily to large
permeabilities rather than left-handed properties.
Metamaterials have thus considerably increased the pa-

rameter space at one’s disposal for manipulating phe-
nomena of QED. An efficient use of this new freedom
requires the formulation of general statements of what
might be achieved and what is impossible in principle.
Working in this direction, upper bounds for the strength
of attractive and repulsive Casimir forces have been for-
mulated [15] and it has been proven that the force between
two mirror-symmetric purely electric bodies is always
attractive [21]. In the present Letter, we establish another
such general principle on the basis of the duality of
Maxwell’s equations under an exchange of electric and
magnetic fields [22,23], also known as electric or magnetic
reciprocity within a generalized framework of classical
electrodynamics [24]. In particle physics, duality has
been discussed as a symmetry of the N ¼ 4 supersym-
metric Yang-Mills theory [25]. We will prove its validity in
the context of macroscopic QED [6,8] and show that under
certain conditions, quantities such as decay rates and dis-
persion forces are invariant with respect to a global ex-
change of electric and magnetic properties. The parameter
space to be considered in the search for optimal geometries
and materials will thus be effectively halved.
We begin by verifying duality for macroscopic QED in

the absence of free charges and currents. We group the
fields into dual pairs (
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Maxwell’s equations are invariant under the general SO(2)
duality transformation
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which may equivalently be expressed as a U(1) transfor-
mation when introducing complex Riemann-Silberstein
fields [22]. The invariance of Maxwell’s equations under
this rotation can be verified by multiplying Eqs. (1)–(3) by
Dð�Þ and using the fact that Dð�Þ commutes with the
symplectic matrix in Eq. (2). Note that the grouping into
dual pairs is solely due to the mathematical structure of the

equations and is in contrast to the fact that Ê, B̂ and D̂, Ĥ
are the pairs of physically corresponding quantities.

For it to be a valid symmetry of the electromagnetic
field, duality must also be consistent with the constitutive
relations. In the presence of linear, local, isotropic, dis-
persing and absorbing media, the constitutive relations in
frequency space can be given asffiffiffiffiffiffi
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where " ¼ "ðr; !Þ and � ¼ �ðr; !Þ denote the relative
electric permittivity and magnetic permeability of the me-

dia and P̂N and M̂N are the noise polarization and magne-
tization which necessarily arise in the presence of
absorption. Invariance of the constitutive relations (5)
under the duality transformation requires that
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This condition is trivially fulfilled if " ¼ � (including
both free space and the perfect lens, " ¼ � ¼ �1 [4]),
where duality is a continuous symmetry. For media with a
nontrivial impedance, the condition (6) only holds for � ¼
n�=2 with n 2 Z. The presence of such media thus re-
duces the continuous symmetry to a discrete symmetry
with four distinct members, whose group structure is that
of Z4. For � ¼ n�=2, Eqs. (5) and (6) imply the trans-
formations
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Maxwell’s equations (1) and (2), together with the con-
stitutive relations (5) for the electromagnetic field in the

absence of free charges and currents, are thus invariant
under the discrete duality transformations � ¼ n�=2, n 2
Z given by Eqs. (4), (7), and (8). This is not only true for
the equations of motion, but clearly must also hold on a
Hamiltonian level. To see this explicitly, recall that the

Hamiltonian of the medium-assisted field is given by ĤF¼P
�¼e;m

R
d3r

R1
0 d!@!f̂y�ðr;!Þ � f̂�ðr;!Þ [6] where the

fundamental bosonic fields f̂� are related to the noise
terms via
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Combining Eqs. (7)–(9), one finds that the fundamental
fields transform as

f̂e
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for � ¼ n�=2, so that Ĥ?
F ¼ ĤF. It is sufficient to focus on

the single duality transformation � ¼ �=2 as summarized
in Table I, which is a generator of the whole group.
Let us next turn our attention to Lorentz forces and the

coupling of the medium-assisted field to charged particles:
We recall that the operator Lorentz force on a neutral body
occupying a volume V can be given as [8]
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(I: unit tensor), while that on a neutral atom with polar-

ization P̂A and magnetization M̂A reads [8,26]

F̂ ¼ rA

Z
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� _̂rA � B̂ðrÞ� þ d

dt

Z
d3rP̂AðrÞ � B̂ðrÞ: (12)

The coupling of one or more atoms to the medium-assisted
electromagnetic field can in the multipolar coupling
scheme be implemented via [8,19]

TABLE I. Effect of the duality transformation with � ¼ �=2.

Partners Transformation

Ê, Ĥ: Ê? ¼ c�0Ĥ, Ĥ? ¼ �Ê=ðc�0Þ
D̂, B̂: D̂? ¼ c"0B̂, B̂? ¼ �D̂=ðc"0Þ
P̂, M̂: P̂? ¼ M̂=c, M̂? ¼ �cP̂
P̂A, M̂A: P̂?

A ¼ M̂A=c, M̂?
A ¼ �cP̂A

d̂, m̂: d̂? ¼ m̂=c, m̂? ¼ �cd̂
P̂N , M̂N: P̂?

N ¼ �M̂N=c, M̂?
N ¼ �cP̂N="

f̂e, f̂m: f̂?
e ¼ �ið�=j�jÞf̂m, f̂?

m ¼ �iðj"j="Þf̂e

", �: "? ¼ �, �? ¼ "
�, �: �? ¼ �=c2, �? ¼ c2�
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Ĥ AF ¼ �
Z

d3r½P̂AðrÞ � ÊðrÞ þ M̂AðrÞ � B̂ðrÞ

þm�1A P̂AðrÞ � p̂A � B̂ðrÞ�; (13)

when neglecting diamagnetic interactions. Using the trans-
formation behavior given in Table I, it is immediately clear
that neither the Lorentz forces on bodies or atoms nor the
atom-field interactions are duality invariant on an operator
level. Even for atoms and bodies at rest with time-
independent fields, duality invariance is prohibited by the
unavoidable noise polarization and magnetization in the
constitutive relations (5).

That said, we will now show that effective quantities
derived from the above operator Lorentz forces and atom-
field couplings do obey duality invariance when consider-
ing atoms and bodies at rest not embedded in a medium. In

particular, we will consider the Casimir force [27]
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the single- and two-atom van der Waals (vdW) potentials
[8,17,28]

UðrAÞ ¼ @

2�"0

Z 1
0

d�

�
�ði�ÞTrGð1Þee ðrA; rA; i�Þ

þ �ði�Þ
c2

TrGð1ÞmmðrA; rA; i�Þ
�

(15)

and

UðrA;rBÞ¼� @

2�"20

Z 1
0
d�Tr

�
�Aði�Þ�Bði�ÞGeeðrA;rB;i�Þ �GeeðrB;rA;i�Þþ�Aði�Þ�Bði�Þ

c2
GemðrA;rB;i�Þ �GmeðrB;rA;i�Þ

þ�Aði�Þ
c2

�Bði�ÞGmeðrA;rB;i�Þ �GemðrB;rA;i�Þþ�Aði�Þ
c2

�Bði�Þ
c2

GmmðrA;rB;i�Þ �GmmðrB;rA;i�Þ
�

(16)

(�, �: atomic polarizability, magnetizability) and the
atomic decay rate [6,29]
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(jni: initial atomic state, !nk: atomic transition frequen-
cies; dnk, mnk: electric, magnetic dipole matrix elements).
Here, Gð1Þ is the scattering part of the classical Green
tensor, where a left index e, m indicates that G is multi-
plied by i!=c ¼ ��=c or r� from the left and a right
index e, m denotes multiplication with i!=c ¼ ��=c or

�r 0 from the right. The Casimir force and the single-atom
vdW force are the ground-state averages of the above
operator Lorentz forces, while the atomic potentials and
rates follow from the atom-field coupling.

To prove the duality invariance of the above quantities
(14)–(17), we note that the Casimir force depends solely on
the classical Green tensor�
r� 1

�ðr; !Þr��
!2

c2
"ðr; !Þ

�
Gðr; r0; !Þ ¼ �ðr� r0Þ;

(18)

while vdW forces and decay rates also depend on �, �, d̂
and m̂. While the transformation behavior of the latter
quantities under duality follows immediately from that of

", �, P̂A and M̂A (see Table I), the transformed Green
tensor, which is the solution to Eq. (18) with " and �
exchanged, can be determined as follows: We first note that
Maxwell’s equations (1) and (2) together with the con-
stitutive relations (5) are uniquely solved by [6]
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(22)

The invariance of Maxwell’s equations implies that this
solution remains valid after applying the duality transfor-
mation. Taking duality transforms of Eqs. (19) and (20),
the unknown transformed Green tensor appears on the
right-hand side of these equations, whereas the transfor-
mations of all other quantities occurring in the equations
can be determined with the aid of Table I. After using
Eqs. (19)–(22) to express the resulting fields on the left-

hand side in terms of P̂N and M̂N and equating coefficients,
one obtains the following transformation rules:

PRL 102, 140404 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

10 APRIL 2009

140404-3



G ?
eeðr; r0; !Þ ¼ ��1ðr; !ÞGmmðr; r0; !Þ��1ðr0; !Þ

þ��1ðr; !Þ�ðr� r0Þ; (23)

G ?
emðr; r0; !Þ ¼ ���1ðr; !ÞGmeðr; r0; !Þ"ðr0; !Þ; (24)

G ?
meðr; r0; !Þ ¼ �"ðr; !ÞGemðr; r0; !Þ��1ðr0; !Þ; (25)

G?
mmðr;r0;!Þ¼"ðr;!ÞGeeðr;r0;!Þ"ðr0;!Þ

�"ðr;!Þ�ðr�r0Þ: (26)

The duality invariance of dispersion forces and decay
rates follows immediately. Using Eqs. (23) and (26) and
noting that the � function does not contribute to the scat-
tering part of the Green tensor, it is seen that the Casimir
force (14) on a body is unchanged when globally exchang-
ing " and�, provided that the body is located in free space.
The duality invariance of the vdW potentials (15) and (16)
also follows from the transformation rules (23)–(26). This
invariance with respect to a simultaneous exchange "$ �
and �$ �=c2 again only holds if "ðrA=BÞ ¼ �ðrA=BÞ ¼ 1.
In contrast to the Casimir force, this does not mean that the
atom has to be located in vacuum, but merely implies that
for atoms embedded in media, local-field corrections must
be included via the real-cavity model in order to insure
invariance [30].

Duality invariance can be used to obtain the full func-
tional dependence of dispersion forces in given scenarios
on the atomic and medium parameters from knowledge of
the respective dual scenario. For instance, it has recently
been shown that in the retarded limit the vdW potential of
two polarizable atoms reads UðrABÞ ¼ �1863@c�A�B"

2=
½64�3"20

ffiffiffiffiffiffiffi
"�
p ð2"þ 1Þ4r7AB� when including local-field

corrections [30]. Making the replacements �! �=c2,
"$ �, one can immediately infer UðrABÞ ¼
�1863@c�2

0�A�B�
2=½64�3 ffiffiffiffiffiffiffi

"�
p ð2�þ 1Þ4r7AB� for mag-

netizable atoms. The utility of this principle becomes even
more apparent for complex problems like the interaction of
two atoms in the presence of a magnetoelectric object
[19,20]. Finally, using the fact that two purely electric,
mirror-symmetric bodies always attract [21], we can im-
mediately conclude that so do two purely magnetic ones.

In addition, Eqs. (23) and (26) imply the duality invari-
ance of the decay rate (17) since the � functions do not
contribute to the imaginary part of the Green tensor; again,
local-field corrections have to be included for atoms em-
bedded in media. This symmetry can be exploited, e.g., to
obtain magnetically driven spin-flip rates of atoms in spe-
cific environments from known electric-dipole driven de-
cay rates.

In conclusion, we have shown that dispersion forces on
atoms and bodies as well as decay rates of atoms are
duality invariant, provided that the bodies are located in
free space at rest and that local-field corrections are taken
into account when considering (stationary) atoms em-

bedded in a medium. The established symmetry operation
of globally exchanging electric and magnetic body and
atom properties is a powerful tool for obtaining new results
on the basis of already established ones. The invariance can
easily be extended to other effective quantities of macro-
scopic QED such as frequency shifts, heating rates or
energy transfer rates.
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