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We introduce a simulation strategy to consistently couple continuum biomembrane dynamics to the

motion of discrete biological macromolecules residing within or on the membrane. The methodology is

used to study the diffusion of integral membrane proteins that impart a curvature on the bilayer

surrounding them. Such proteins exhibit a substantial reduction in diffusion coefficient relative to

‘‘flat’’ proteins; this effect is explained by elementary hydrodynamic considerations.

DOI: 10.1103/PhysRevLett.102.138102 PACS numbers: 87.15.Vv, 83.10.Mj, 87.16.A�, 87.16.D�

Lipid-bilayer membranes are among the most important
and most versatile components of biological cells [1,2];
biomembranes protect cells from their surroundings, pro-
vide a means to compartmentalize subcellular structures
(and the functions of these structures), and act as a scaf-
folding for countless biochemical reactions involving
membrane associated proteins. Our conceptual picture of
biological membranes as a ‘‘two-dimensional oriented so-
lution of integral proteins . . . in the viscous phospholipid
bilayer’’ [3] was popularized well over 30 years ago.
Quantitative physical models for the energetics [4] and
dynamics [5] associated with shape fluctuations of homo-
geneous fluid membranes, and for the lateral diffusion
coefficient of integral membrane proteins within a flat
bilayer [6] were developed shortly thereafter and still
find widespread use up to this day.

Interestingly, the coupling of protein diffusion to the
shape of the membrane surface has become a subject of
study only relatively recently (see [7–9], and references
within). One well studied consequence of membrane shape
fluctuations is that a protein must travel a longer distance
between two points in 3D space if the paths connecting
these points are constrained to lie on a rough surface as
opposed to a flat plane. This purely geometric effect is
expected to have practical experimental implications; mea-
surements that capture a 2D projection of the true motion
over the membrane surface will infer diffusion coefficients
of diminished magnitude relative to the intrinsic lateral
diffusion locally tangent to the bilayer surface [7–11].
Beyond this generic effect, which should apply to anything
moving on the membrane surface in relatively passive
fashion (lipids, proteins, cholesterol, etc.), certain mem-
brane associated proteins effect shape changes in the bi-
layer. Specific examples include the SERC1a calcium
pump [12] and BAR (bin, amphiphysin, Rvs) domain
dimers [13]. Direct structural evidence from x-ray crystal-
lography [12,13], experimental studies of vesicle topology
at the micron scale [13,14], and atomically detailed simu-

lations [15] all indicate the ability of these proteins to drive
membrane curvature (see Fig. 1).
The diffusion of membrane proteins with intrinsic cur-

vature is more complex than the diffusion of a relatively
passive spectator and remains incompletely explored in the
literature. Although stochastic differential equations cou-
pling the lateral motion of curved proteins to thermal shape
fluctuations of a continuous elastic bilayer have been pro-
posed [11,16], these equations have been analyzed only
under the simplifying assumption that the protein does not
affect the shape of the membrane surface. Under such an
approximation, it was predicted both analytically [11] and

FIG. 1 (color online). An appropriately shaped protein will
tend to distort the local shape of the bilayer into a bent configu-
ration. In our simulations, the protein’s effective size is defined
via the envelope function in Eq. (5) (displayed next to the
cartoon, top). The distortion is most readily seen by minimizing
H for the composite protein-bilayer system (middle); however,
the protein’s influence is strong enough to maintain visibly
apparent perturbations, even in the presence of fluctuations
(bottom). See Table I for parameters.
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numerically [16] that curved proteins are expected to dif-
fuse more rapidly than flat ones. The full numerical analy-
sis provided in the present work suggests exactly the
opposite effect—protein curvature decreases lateral mobil-
ity across the bilayer. The disagreement with previous
work is attributable to the fact that the protein’s influence
on bilayer shape is of primary importance (see Fig. 1) and
cannot be ignored.

Our starting point is the Monge-gauge Helfrich
Hamiltonian [4] for energetics of a homogeneous mem-
brane surface under conditions of vanishing tension

H 0 ¼ 1

2

Z
A?

dx½Kmðr2hÞ2 þ 2K0
mGðhÞ�; (1)

where hðxÞ � hðx; yÞ describes the local membrane dis-
placement from a flat reference plane at z ¼ 0 (see Fig. 1).
Here GðhÞ ¼ ð@xxh@yyh� @xyh@xyhÞ is the Gaussian cur-

vature, andKm andK0
m are the membrane bending modulus

and saddle-splay modulus, respectively. The integration
region A? ¼ L2 is always taken to be a square box with
periodic boundary conditions assumed. We treat mem-
brane proteins as localized regions of enhanced rigidity
within the bilayer. A single protein centered within the
bilayer at position ðrðtÞ; hðrðtÞÞÞ � ðxðtÞ; yðtÞ; hðxðtÞ; yðtÞÞÞ
is thus assumed to modify the Hamiltonian as H ¼
H 0 þH int, with

H int ¼ 1

2

Z
A?

dxGpðx� rðtÞÞ½Kpðr2h� 2CpÞ2

� Kmðr2hÞ2 þ 2ðK0
p � K0

mÞGðhÞ�: (2)

Kp and K0
p are the protein bending and saddle-splay mod-

uli, and Cp is the spontaneous curvature associated with

protein shape. The function Gpðx� rðtÞÞ describes the

envelope of protein influence over bilayer elastic proper-
ties; the specific function chosen will be discussed in detail
below.

Using a Fourier representation hðxÞ ¼ 1
L2

P
qhqe

iq�x,
membrane dynamics may be cast as a set of coupled
Langevin equations for the individual Fourier modes
[17,18]

_h qðtÞ ¼ �qFqðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTL

2�q

q
�qðtÞ; (3)

where FqðtÞ is the Fourier transform of the force per unit

area Fðx; tÞ ¼ ��H =�hðx; tÞ, �q ¼ 1=ð4�qÞ corre-

sponds to the Oseen hydrodynamic kernel �ðxÞ ¼
1=ð8��jxjÞ, and �qðtÞ is a Gaussian white noise with

h�qðtÞi ¼ 0 and h�qðtÞ�q0 ðt0Þi ¼ 2�q;�q0�ðt� t0Þ, to ensure
satisfaction of the fluctuation-dissipation theorem.
The protein’s position may similarly be described in

terms of a Langevin equation that implicitly enforces
protein localization to the membrane surface [8,9]. The
two independent variables describing this motion are the
components of rðtÞ (with i; j ¼ 1; 2 and summation con-
vention assumed)

_r iðtÞ ¼ D0vi þ
ffiffiffiffiffiffiffiffiffi
2D0

p
�ij�jðtÞ þ D0

kBT
ðg�1Þijfj: (4)

Here ðg�1Þij ¼ �ij � @ih@jh=g is the inverse metric ten-

sor, g ¼ 1þ ðrhÞ2 is the determinant of the metric gij ¼
�ij þ @ih@jh, and we have defined @i � @=@xi. Equa-

tion (4) introduces geometric factors including vi ¼
�½ðg�1Þjk@j@kh�@ih=g and �ij ¼ �ij � @ih@jh=ðgþ ffiffiffi

g
p Þ

[i.e., the square root of the inverse metric tensor ðg�1Þij ¼
�ik�jk]. The Gaussian white noise �iðtÞ with h�iðtÞi ¼ 0

and h�iðtÞ�jðt0Þi ¼ �ij�ðt� t0Þ guarantees that a tracer

particle (defined by H int ¼ 0) undergoes a curvilinear
random walk over the membrane surface with diffusion
coefficientD0. The last term in Eq. (4) reflects the effect of
the interaction-induced force fi ¼ �@H int=@xi.
Equations (1)–(4) specify the stochastic thermal evolu-

tion for a single curved protein coupled to an elastic
membrane. As noted above, equations very similar to these
have been proposed previously [11,16] but have been
analyzed only by neglecting the contribution of H int to
Fq while maintaining its contribution to fi. To avoid this

uncontrolled approximation, it is necessary to introduce a
numerical algorithm that can consistently couple protein
position rðtÞ to membrane undulations hðx; tÞ.
For both physical and numerical purposes, we must

truncate the membrane modes at some short-distance scale
a, which can, for example, be taken to represent the typical
molecular (lipid) size or bilayer thickness. We thus limit
the Fourier modes appearing in Eq. (3) to q ¼ ðqx; qyÞ ¼
ð2�n; 2�mÞ=L, where M ¼ L=a with integer n and m in
the range�M=2< n,m � M=2. In principle, this reduced
set of modes describes a fully continuous membrane height
profile via hðxÞ ¼ 1

L2

P
qhqe

iq�x at any given point x.

TABLE I. Default parameter values used in the simulations. The protein area is chosen as Ap ¼ ð4aÞ2 (giving a protein diameter of
ap � 10 nm), the D0 value qualitatively reflects the motion of band 3 protein dimers on the surface of human red blood cells [18], and

�w stands for the viscosity of water. For simplicity, we assume that both bilayer and protein saddle-splay moduli are equal in
magnitude but opposite in sign to the corresponding bending moduli.

Parameter

Box

dimension

Lattice

spacing

Protein

area Temperature

Bare protein

diffusion

coefficient

Bilayer

bending

modulus

Protein

bending

modulus

Saddle-splay

moduli

Protein

spontaneous

curvature

Solvent

viscosity

Symbol L a M ¼ L
a Ap T D0 Km Kp K0

mðpÞ Cp �

Value 250 nm 2.5 nm 100 100 nm2 300 K 5:0 �m2

s 5kBT 40kBT �KmðpÞ 0:1 nm�1 �w ¼ 0:001 Pa � s
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However, it is computationally advantageous to explicitly
track the membrane height only over the discrete M�M
real-space lattice [defined at positions x� ¼ ðp; qÞa with
integer 0 � p, q <M] conjugate to the chosen hq’s via

fast-Fourier transformation [19].
The interaction between a fully continuous variable

describing protein position rðtÞ and a discrete representa-
tion of the membrane height field fhðx�; tÞg poses certain
challenges. A minor issue is that Eq. (4) requires the shape
of the membrane surface over the entire x; y plane and not
just at the lattice sites fx�g. This problem is readily handled
via linear interpolation to obtain hðx; tÞ and the required
derivatives at arbitrary x from the corresponding neighbor-
ing lattice values [8]. A more complex problem involves
the dynamics of the hqðtÞ’s in Eq. (3). The forces in this

equation include contributions due to the coupling between
protein and bilayer from Eq. (2). The envelope function
GpðxÞ reflects protein size and is quite localized in real

space; the natural way to deal with Eq. (2) (and the related
force expressions) is to approximate the integral by simple
quadrature, i.e.,

R
dxGpðx� rðtÞÞF ðxÞ � a2

P
�Gpðx� �

rðtÞÞF ðx�Þ for arbitrary function F . To define a numerical
scheme that is both efficient and accurate, the specific
functional form chosen forGp is critical. Naive continuous

choices like 2D Gaussians [16,18] lead to an effective
normalization (as computed by quadrature) that varies
with the offset between the envelope center and the discrete
lattice. Piecewise linear forms for Gp can be defined that

suffer no such normalization issue, but such functions lead
to discontinuous derivatives as the protein-lattice offset
changes. Both scenarios are unacceptable as these numeri-
cal issues lead to a breaking of the homogeneity of the
membrane surface; the protein will tend to favor (or dis-
favor) lattice sites over other regions of space.

Our numerical description of coupled membrane-protein
dynamics shares features with the immersed boundary
formulation of hydrodynamics [20]. In that work, a series
of envelope functions are introduced that are continuous,
localized in space, and strictly preserve normalization as
evaluated by quadrature. For our purposes, we take
GpðxÞ ¼ ðAp=a

2Þ�ðx=aÞ�ðy=aÞ, with [20]

�ð2uÞ ¼ 1

16

8>>><
>>>:

5þ 2u�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7� 12u� 4u2

p
�2� u��1;

3þ 2uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4u� 4u2

p
�1� u� 0;

3� 2uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4u� 4u2

p
0� u� 1;

5� 2u�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7þ 12u� 4u2

p
1� u� 2;

(5)

and zero for all other u values (see Fig. 1 for a plot). Ap

defines an effective protein area, and the envelope function
is nonvanishing over a total of 64 lattice sites. In order to
simulate the dynamics of the system, we evolve Eqs. (3)
and (4) in time via the Euler-Maruyuma method [21].
The resulting algorithm is essentially an application of
‘‘Brownian dynamics with hydrodynamic interactions’’

[22] applied to membrane shape fluctuations and protein
motion. Adopting the envelope function defined in Eq. (5)
allows a seamless melding of the approaches introduced in
Refs. [8,9,18] (a detailed description of our algorithm will
be provided in a future publication).
The protein’s influence on the membrane is most easily

seen in the absence of thermal shape fluctuations of the
membrane, but for sufficiently large Cp and Kp values the

effect of the protein remains clearly visible despite thermal
fluctuations of the membrane surface (see Fig. 1). The
average distortion of the membrane surrounding the pro-
tein is sufficient to significantly slow protein motion in all
cases we have studied (see Fig. 2). This slowing derives
from two effects. First, the protein tends to trap itself in the
deformation created by its own perturbation to the bilayer.
The energy-minimized configuration displayed in Fig. 1
places the protein at the bottom of a curved valley; at-
tempted diffusion up the walls of this valley is hindered by
the interaction-induced force in Eq. (4). Second, x; y trans-
lation of the protein is accompanied by translation of the
membrane deformation surrounding this protein. The hy-
drodynamic effects included in Eq. (3) dictate that the
translation of such a deformation is resisted by the viscous
drag of the medium surrounding the bilayer. This drag acts
in addition to the usual quasi-2D drag incorporated within
D0 and slows protein motion. These effects are most
pronounced when shape fluctuations of the bilayer are
neglected by setting T ¼ 0 in Eq. (3). Increasing the local
deformation around the protein or the solvent viscosity
both decrease D. In Fig. 2, we display three means to
control this effect. Increasing Cp drives large deformations

from a flat plane for any finite Kp. Larger values of Kp will

tend to increase this effect up until the point where the
rigidity of the protein becomes effectively infinite and the
response to the protein saturates. The hydrodynamic drag
in our model is controlled via�; increases in� reduceD as
effectively as do perturbations to membrane shape.
Within the asymmetric coupling approximation, which

ignores the influence of the protein on membrane shape, it
is predicted that bilayer shape fluctuations will enhance
curved protein mobility [11,16] (i.e., D>D0, insets in
Fig. 2). Although this effect can be seen in our simulations,
the enhancement is slight (relative to the similar effect
within the aforementioned approximation scheme) and
cannot overcome the dominant slowing caused by the
protein’s distortion of the bilayer (compare open circles
and triangles in Fig. 2). We find D<D0 for all cases
studied, which represents a qualitative departure from ear-
lier predictions.
We may approximately account for the viscous drag

effect discussed above by invoking an adiabatic approxi-
mation and assuming that the energy-minimized mem-
brane distortion profile [denoted by �hðx; tÞ] instantane-
ously tracks protein position. Hence,

_�hðx; tÞ ¼ �v � r �hðx; tÞ; (6)
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for a protein moving at constant lateral velocity v. The
power dissipated by viscous losses in the medium may be

calculated from P¼ 1
L2

P
q
_�hqðtÞF�qðtÞ, where FqðtÞ follows

from Eq. (3) as Fq ¼ _�hq=�q. Thus, by using Eq. (6),

the power loss may be written as P ¼ 1
L2

P
qðv �

qÞ2j �hqj2=�q � jvj2=�def , with �def being the effective

mobility of the deformation. The effective protein diffu-
sion coefficient follows from Ddef ¼ �defkBT and D�1 ¼
ðD�1

0 þD�1
defÞ to give

1

D
� 1

D0

þ 2�

kBTL
2

X
q

jqj3j �hqj2: (7)

This expression depends only on the minimized deforma-
tion profile of the membrane at a fixed protein position and
is readily calculated (shown as solid squares in Fig. 2).
Although the approximation is imperfect due to neglect of
membrane fluctuations and the self-trapping effect dis-
cussed above, the adiabatic results serve as a reliable
estimator of the observed trends for the full simulation.

We are not aware of experimental studies that specifi-
cally investigate the role of protein curvature on self-
diffusion but do note that recent experiments [23] show
deviations from the standard theory [6] used to predict
membrane-protein mobility. The effect described here
may prove to be important in describing these deviations
for certain proteins. The solvent viscosity dependence we
find is at odds with the weak (logarithmic) dependence
expected for flat proteins [6] and provides a concrete
means to verify our predictions experimentally.
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FIG. 2. Projected diffusion coefficients for protein motion on an elastic membrane. In each panel, one of the three parameters Kp
(protein bending modulus), Cp (protein spontaneous curvature), and � (medium viscosity) is varied as indicated while holding the
remaining physical properties at the default values indicated in Table I. Circles indicate the results of full simulations including thermal
motion of both the bilayer and the protein. The triangles indicate results obtained by turning off all bilayer shape fluctuations (i.e.,
setting T ¼ 0 for membrane undulation modes), and the solid squares indicate the results of the adiabatic theory discussed in the text.
The insets show simulation results obtained within the asymmetric coupling approximation. Error bars are approximately the size of

the symbols. Diffusion coefficients are calculated as D ¼ ½rðtÞ � rð0Þ�2=ð4tÞ. The simulations run for �5� 107 time steps of size
�t� 0:01 ns, ensuring both numerical accuracy and statistically reliable results. The protein’s root-mean-square displacements over
the course of the simulations are approximately 100 nm (i.e., 20 times the protein’s radius).

PRL 102, 138102 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
3 APRIL 2009

138102-4


