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We designed a model-based analysis to predict the occurrence of population patterns in distributed

spiking activity. Using a maximum entropy principle with a Markovian assumption, we obtain a model

that accounts for both spatial and temporal pairwise correlations among neurons. This model is tested on

data generated with a Glauber spin-glass system and is shown to correctly predict the occurrence

probabilities of spatiotemporal patterns significantly better than Ising models only based on spatial

correlations. This increase of predictability was also observed on experimental data recorded in parietal

cortex during slow-wave sleep. This approach can also be used to generate surrogates that reproduce the

spatial and temporal correlations of a given data set.
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The structure of the cortical activity and its relevance to
sensory processing or motor planning are a long-standing
debate [1]. There is a need to describe the structure of the
spiking activity based on well-defined statistical models.
One approach consists of inferring the state of the network
based on Hidden Markov Models [2]. Another approach
used maximum entropy models, which is common in the
analysis of complex systems [3]. The latter focused on
spike patterns lying within one time bin [4,5], but is not
prone to predict the temporal statistics of the neural activity
[6]. Here, we design a model inspired from both lines of
research to better describe the neural dynamics. This model
is a maximum entropy model-based on the correlation
values, and respecting a Markovian assumption. Thus, it
takes into account both spatial and temporal correlations.
We show its ability to describe the spatiotemporal statistics
of the activity on simple network models and recordings in
the mammalian parietal cortex in vivo.

We consider N neurons whose spikes are recorded and
binned, for a long time period, noted as f�ðtÞg :¼
f�iðtÞgi¼1;:::;N where �i 2 f�1; 1g. The purpose of a sta-

tistical model is to describe as closely as possible the
probability distribution of the spatiotemporal patterns,
Pðf�ðtÞg; f�ðtþ 1Þg; . . .Þ with a limited number of pa-
rameters. For that purpose, we make a Markovian hy-
pothesis on this distribution, and aim at finding the joint

distribution Pðf�g�þ1; f�0g�Þ ¼ Pðf�g�þ1jf�0g�ÞPðf�0g�Þ
which maximizes the entropy Hðf�g�þ1;f�0g�Þ¼
�P

f�g;f�0gPðf�g�þ1;f�0g�Þ ln½Pðf�g�þ1;f�0g�Þ� with the

constraints on the first- and second-order statistical
moments of the activity mi ¼ h�ii, Cij ¼ h�iðtÞ�jðtÞi
and C1

ij ¼ h�iðtÞ�jðtþ 1Þi, the normalization con-

straint, and the marginal distribution constraint:P
f�0gPðf�g�þ1; f�0g�Þ ¼ Pðf�g�þ1Þ.
By using Lagrange multipliers, and then applying the

marginal distribution constraint, we find
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Zðf�gÞ being the conditional partition function, and
fhi; JijgNi;j¼1 are the Lagrange multipliers corresponding

to the constraints given by fmi; CijgNi;j¼1.

We assume that the detailed balance is satisfied for a
stationary distribution Pstatðf�gÞ. Therefore, the Markovian
matrix is also time-invariant and satisfies

Pðf�0gjf�gÞPstatðf�gÞ ¼ Pðf�gjf�0gÞPstatðf�0gÞ (2)

so that

Pðf�g; f�0gÞ ¼ Pðf�0gjf�gÞPstatðf�gÞ ¼
expðPN
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Zðf�0gÞ Pstatðf�0gÞ: (3)

We then develop the extensive quantity ln½Zðf�0gÞ� up to
the second order:

ln½Zðf�0gÞ�¼ lnðZeffÞ�
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(4)

The k-th order terms are k products of J1ij. This approxi-

mation is thus valid in the weak temporal correlation limit.

Note that the coefficients of this development,
fhri ; JrijgNi;j¼1, can be obtained analytically from (3). The

final form for the transition function then becomes

Pðf�gjf�0gÞ¼ 1
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Using the detailed balance, the stationary distribution is
also restricted to the second order and has the generic form

Pstatðf�gÞ ¼
expðPN

i¼1 h
stat
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(6)

Since

Pstatðf�gÞ ¼
X
f�0g

Pðf�gjf�0gÞPstatðf�0gÞ; (7)

the parameters fhstati ; Jstatij gNi;j¼1 are fully determined by the

mi and Cij values.

Numerically, we adopt a slightly different approach,
which is shown to be equivalent to the approximation
made above. We maximize separately the entropy of the
stationary distribution Pstatðf�gÞ and the time-invariant
joint distribution Pðf�g; f�0gÞ, without the marginalization
condition. We obtain (6) for Pstatðf�gÞ, and

Pðf�g;f�0gÞ¼ 1
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The transition matrix is then determined by

Pðf�gjf�0gÞ ¼ Pðf�g;f�0gÞ
Pstatðf�0gÞ , which gives back (5) if we iden-

tify hri ¼ h0i � hstati and Jrij ¼ J0ij � Jstatij .

This model contains seven sets of parameters,
fhi; hstati ; hri ; Jij; J

stat
ij ; Jrij; J

1
ijgNi;j¼1. In order to be equivalent

to the previous model, we must apply several constraints
which will reduce the number of free parameters. The
stationary parameters fhstati ; Jstatij gNi;j¼1 are bound to the

others by using the relation (7) as before. Then, we have
to apply a normalization on the conditional probability
distribution (5) to recover the marginalization condition,

which is a special form of (4) with Zeff ¼ Ztr

Zstat
. Therefore,

the parameter set fhri ; JrijgNi;j¼1 is also defined by

fhi; Jij; J1ijgNi;j¼1 which are the only free parameters. This

model is thus equivalent to the previous approximation and
allows for more tractable numerical treatments.

To test the model, we first used a raster generated by a
Glauber model [7], whose flip transition probability from
one time step to the next is

Wð�i ! ��iÞ ¼ 1

2�0

�
1� �iðtÞ tanh

�X
j

½Jgij�jðtÞ

þ hgj�jðtÞ�
��

(9)

where �0 is the effective time constant and Jij, hi are

coupling constants of the neurons � [8].
To fit the model parameters to the correspondingmi, Cij,

andC1
ij values, we started with an analytical approximation

of the solution [9] followed by a gradient descent: at each
time step, the mi, Cij and C1

ij predicted by the model were

estimated through a Monte Carlo algorithm, compared to
the experimental ones, and the model parameters were
updated according to the difference. The algorithm was
stopped when the difference between the theoretical and
experimental values was less than 0.005, of the order of the
uncertainty on the mi and Cij estimations.

In the following, we compared this model to simpler
versions already used in the literature. The ‘‘Ising model’’
has the same description of Pstatðf�gÞ, but assumed
Pðf�g; f�0gÞ ¼ Pstatðf�gÞPstatðf�0gÞ [4,6]. The ‘‘indepen-
dent model’’ assumed no second-order interactions: all
the previous parameters are null but the hstati .
To estimate their performance in describing the statistics

of the neural activity, we estimated the occurrence proba-
bility of several spiking patterns empirically and compared
it to the ones predicted by each model. Figure 1 shows the
prediction of the three models for the probability of pat-
terns with, respectively, 1, 2, and 3 time bins. For 1-bin
patterns, the Markov and the Ising model are equivalent,
and showed a good prediction performance, with most of
the points prediction being in the confidence interval of the
estimated probability. For patterns with 2 and 3 time bins,
the prediction remained satisfying for the Markov model,
while it is strongly degraded for the Ising model. Note that
the Ising and independent models give similar perfor-
mances here, contrary to [4,5]. Indeed, for a broad range
of parameters in the Glauber model, the absolute correla-
tion values are weak. However, their temporal extent con-
trolled by �0 [see Fig. 2(d)], is already sufficient to impair
the Ising model performance.
We quantified the fit between the model prediction and

the experimentally measured statistics by computing the
Jensen-Shannon Divergence: DJSðP;QÞ ¼ H½0:5ðPþ
QÞ� � 0:5½HðPÞ þHðQÞ� [where Hð�Þ is the Shannon en-
tropy] measures the similarity between two distributions P
and Q. Figure 2(a) shows the value of DJS for the three
models, for different numbers of bins in the pattern. This
confirmed our previous observation. For one bin, the Ising
and theMarkov model are equivalent, and performed better
than the independent model. For two bins or more, the
Markov model showed lower DJS values than the Ising
model and the independent model. This prediction per-
formance does not vary significantly with the number of
bins. The Markov model is thus able to predict the proba-
bility of a pattern even when it is composed of several bins.
It thus describes with more accuracy the statistics of the
neural activity over a large temporal extent.
The better performance of the Markov model compared

to the Ising model has to be related with the shape of the
correlation functions: if it can be reduced to a Dirac-like
form, there should be no difference between the Markov
and Ising models [case �0 ¼ 1 in Fig. 2(c) and 2(d)].

Above 1, the normalized difference � logðDJSÞ ¼
½logðDMarkov

JS Þ � logðDIsing
JS Þ�= logðDIsing

JS Þ quickly increases

to reach a peak performance of 120% around 2.5, and then
slowly decreases to a plateau of 46% improvement from
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the Ising to the Markov model, for �0 � 10. The Markov
model thus performs better over a large range of �0 values.
The prediction is at best when the ratio between the corre-
lation time constant [Fig. 2(d)] and the bin size is around
2.5, but remains satisfying for larger ratios.

We also computed the fraction of the ensemble correla-

tions that was captured by the Markov model, I2
In
¼ S1�S2

S1�Sn
,

where Sk is the entropy when taking into account the
correlations up to the k-th order [4]. This measures the
improvement of the fit from the independent model to the
Markov model. The value is maximal for two time bins,
and then decreased [Fig. 2(b)], in line with the observed
difference inDJS between the independent and the Markov
model. This Markov model is thus able to explain a major
part of the higher order spatiotemporal statistics.

This model can also be used to generate surrogate rasters
having the same statistics as the captured ones. For that
purpose, starting from an initial random pattern, we gen-
erate at each time step a new pattern according to (5). We
then compared the statistics of this new raster with the
original prediction [Fig. 3(a)]. Although the generator only
used the hi, Jij, and J1ij coefficients of the model, the

generated stationary probability is in very good agreement
with the predicted stationary distribution estimated from
the original data set, described by the hstati and Jstatij . This

result shows the consistency of the model: the transition
matrix defined by the hi, Jij, and J

1
ij parameters has indeed

the stationary distribution defined by the hstati and Jstatij

coefficients in (6). We then applied the same analysis to
the surrogate data, to obtain a model of the surrogate
statistics. Figure 3(b) shows that we recover the same
predictions than with the original analysis. The generator
is thus producing a surrogate raster congruent with the
statistical model.
We then tested the model on in vivo data, composed of

8 simultaneous multiunit recordings in the cat parietal cor-
tex in different sleep states [Slow Wave Sleep (SWS) and
Rapid Eye Movement (REM)] [10]. During SWS, the
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FIG. 2 (color online). Quantification of the models perform-
ance. (a) Jensen-Shannon Divergence DJS between the predic-
tion of the three statistical models, and the probabilities
estimated empirically, for different pattern sizes. The raster
has been generated by the Glauber numerical model with pa-
rameter �0 ¼ 1:5. The gray line indicates the value below which
DJS is not significantly different from zero (p � 0:01, [13]).
(b) Quantification with the information ratio I2=IN .
(c) Comparison for 2-bin pattern sizes, for different values of
the �0 parameter in the Glauber model. (d) Autocorrelation of
the population averaged activity for different �0.
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FIG. 1 (color online). Performance of the 3 statistical models
to describe the statistics generated by the Glauber model (�0 ¼
2). For each panel, we compared the probability of several
patterns estimated empirically from the raster, and predicted
by the corresponding model. Each point corresponds to a differ-
ent pattern, picked up in the raster. The point color indicates the
number of spikes in each pattern. The black line indicates
equality, and the dashed curves the 95% confidence interval
for the estimated probability. Each column corresponds to one
of the three models described earlier. From left to right: the
Markov, Ising and Independent models (see text). The different
lines correspond to different pattern sizes (from top to bottom: 1,
2, and 3 temporal bins in the pattern).
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FIG. 3 (color online). Tests of the surrogate raster generator.
(a) Comparison between the pattern probabilities in the surrogate
raster, and the ones predicted by the model in the original
analysis, for 1-bin patterns and a Glauber model with �0 ¼ 1
(DJS ’ 0:0003). Same representation as in Fig. 1. (b) Same
comparison than (a) for a Glauber model with �0 ¼ 1:5 (DJS ’
0:0005). (c) Comparison between the prediction of the model
fitted on the original data (�0 ¼ 2), and the prediction fitted on
the surrogate raster, for 2-bins pattern (DJS ’ 0:0024). (d) Same
comparison than C for 3-bins patterns (DJS ’ 0:0024).
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performance of the Markov model is significantly higher
than for the Ising model for different template sizes above
2 [Fig. 4(a)]. The improvement was comparable to the
difference between independent and Ising models. We
estimated � logðDJSÞ as above for different combinations
of template and bin sizes. The result holds, with DJS in the
same order of magnitude, as long as the pattern length,
defined as ðtemplate sizeÞ � ðbin sizeÞ, is below �120 ms
[Fig. 4(c)]. To see how the sleep state affects this result, we
compared the � logðDJSÞ between the SWS and the REM
activities [Fig. 4(c)]. For pattern length below �120 ms,
the improvement drops rapidly for the REM state. For very
large pattern lengths (�300 ms), the Markov and Ising
models perform equally well [� logðDJSÞ ¼ 0] for both
states. This faster drop of performance is related to the
smaller correlation time constant in the REM state
[Fig. 4(b)], and is reminiscent of the case �0 ¼ 1 in the
Glauber model, while SWS seems more similar to the case
�0 > 1 [see Fig. 2(c)]. To further emphasize this relation,
we measured the correlation time constant �0 for both
states. We then computed � logðDJSÞ for different pattern
lengths, expressed in unit numbers of their respective
correlation time constant ðpattern lengthÞ=�0. When re-
scaled, both states exhibit the same dependency with the
pattern length [Fig. 4(d)]. The Markov model is thus suited

for the analysis of different data sets and for pattern lengths
up to 10 times their correlation time constant.
We have presented a probabilistic model which accounts

for distributed spiking activity based on both spatial and
temporal pairwise correlations. The model predicts the
occurrence probability of spatiotemporal spike patterns,
and can be used to generate surrogates which mimic the
temporal and spatial correlation structure of the data. It
would be interesting to test it on the specific data for which
the Ising model fails [6]. Beyond spiking activity, other
event-based data with long enough recordings might be
interesting to analyze with this model [11]. This method of
analysis will help to tackle fundamental issues about the
structure of the neural activity, like the existence of higher
order statistics or the Markovian nature of the temporal
correlations. It could also impact on a broad range of areas
of physics and biology [12].
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FIG. 4 (color online). Test of the models on experimental data.
(a) DJS for the 3 models, estimated for the activity of 8 channels
in cat parietal cortex, and for different template sizes. Bin
width ¼ 10 ms. (b) Autocorrelation of the population averaged
activity for the SWS and REM sleep states. The correlation time
constants �0 were estimated by fitting an exponential function.
(c) Relative log-difference � logðDJSÞ between the Markov and
Ising DJS, compared for the SWS and the REM data. The dotted
line indicates equality. The different points correspond to differ-
ent combinations of template and bin sizes, color coded by the
pattern length (template size� bin size). Points with black edge
correspond to panel (b) values. (d) � logðDJSÞ for both states and
for different pattern lengths, in unit of their respective correlation
time constant ðpattern lengthÞ=�0.
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