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We conduct athermal simulations of freely cooling, viscous soft spheres around the jamming transition

density �J and find evidence for a growing length �ðtÞ that governs relaxation to mechanical equilibrium.

�ðtÞ is manifest in both the velocity correlation function and the spatial correlations in a scalar measure of

local force balance which we define. Data for different densities � can be collapsed onto two master

curves by scaling �ðtÞ and t by powers of j���Jj, indicative of critical scaling. Furthermore, particle

transport for �>�J exhibits aging and superdiffusion similar to a range of soft matter experiments,

suggesting a common origin. Finally, we explain how �ðtÞ at late times maps onto known behavior away

from �J.
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Discontinuous phases such as granular media, foams,
and emulsions often exhibit a jamming transition from a
fluid to an amorphous solid as the volume fraction is
increased [1]. This transition is characterized by the onset
of elastic response, deriving from the deformation of par-
ticles or droplets within a system-spanning contact net-
work that inevitably arises when excluded volume
constraints cannot be satisfied. Numerical studies of model
athermal systems have revealed similarities to continuous
phase transitions: Static quantities such as elastic moduli
vanish algebraically as the jamming volume fraction �J is
approached from above [2], accompanied by diverging
length scales in the linear response [3]. Furthermore, non-
linear rheology under continuous shear has revealed a
diverging viscosity as � ! ��

J , preconfiguring a finite
yield stress above �J [4–6]. The flow curves can be
made to collapse onto two master curves, one for above
the transition and one below, when the stress and strain
rates are scaled by powers of j���Jj [4,5], analogous to
critical scaling functions [7].

However, these static or driven systems mask the relaxa-
tion mechanisms by which packings reduce unbalanced
forces, preventing comparison with the rich phenomenol-
ogy of relaxation in nonequilibrium systems. The noted
similarities with criticality suggest we look there first:
Systems quenched to their critical temperature attain local
equilibrium on wavelengths shorter than a correlation
length �ðtÞ that grows algebraically with time [8]. This
growing length is at the root of the aging of correlation and
response functions, which include factors of the form
g½�ðtw þ tÞ=�ðtwÞ� for a time tw since quench and a lag
time t. After suitable normalization, the functions gðxÞ are
universal, belonging to a small number of dynamic univer-
sality classes. Aging is also present in (noncritical) glassy
systems, but �ðtÞ is either implicit or has a different physi-
cal interpretation such as domain size [9]. It is not known if
any of this phenomenology carries over to athermal sys-
tems at or near �J.

Here, we numerically investigate nonlinear relaxation in
freely cooling soft sphere systems for a range of � span-
ning �J. We find evidence for a growing length scale �ðtÞ
corresponding to the relaxation towards mechanical equi-
librium, i.e., force balance. In analogy with critical scaling,
�ðtÞ for different� can be collapsed onto�<�J and�>
�J master curves by scaling � and t by suitable powers of
j���Jj. From this scaling, we also infer an unjamming
time that diverges as� ! ��

J . For�>�J, �ðtÞ � t for all
t attributable to elastic propagation, and the particle trans-
port properties obey aging similar to experiments on a
range of soft-matter systems [10–12], suggesting a com-
mon origin. Finally, for late times, we show how �ðtÞmaps
onto known behavior away from �J.
Model.—We consider viscous soft discs in a square

simulation cell of dimensions L� L with periodic bound-
ary conditions. To reduce ordering effects, the particle
diameters d are uniformly distributed over the range
½0:7hdi; 1:3hdi� with hdi the mean. Particles have equal
mass density. Overlapping particles � and � with centers
separated by a distance R�� < 1

2 ðd� þ d�Þ interact in two

ways: (i) A linear repulsive force fel ¼ �½1�
2R��=ðd� þ d�Þ� acting along the line of centers, and
(ii) a viscous damping fvis ¼ �ðv� � v�Þ which acts to
reduce the relative velocity between � and �. Particles
making no contacts move ballistically. Note that for sim-
plicity, there is no distinction between tangential and nor-
mal velocities in the damping term.
A structureless initial configuration is constructed by

depositing particles uniformly over the simulation cell to
give the required area fraction � ¼ L�2

P
��ðd�=2Þ2.

Each velocity is initially zero, so the initial energy reser-
voir is provided by overlapping particles and varies as �2.
This variation with � is weak compared to the much more
rapidly varying quantities discussed below, so no crucial
dependence on the choice of initial conditions is expected.
Particles were iterated using the velocity Verlet algorithm
which includes particle inertia [13]. The simulations were
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continued until the pressure either changed by less than one
part in 105 over a time interval corresponding to 20% of the
total, or dropped below some predefined value. For each�,
the system size L was systematically increased until the
pressure and potential energy agreed over the entire time
range, to within error bars. We observed that larger system
sizes were required as �J was approached. Below, we

normalize lengths by hdi, times by t0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihdihmi=�p

and

the damping coefficient � by �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hmi=hdip

, with hmi
the mean particle mass.

Results.—All results below are for a damping coefficient
�=�0 ¼ 0:04, which corresponds to a coefficient of resti-
tution� 0:88 in the dilute limit when there are no multiple
contacts. An overview of system evolution is provided in
Fig. 1, which shows the static structure factor Sðq; tÞ ¼
N�1h�ðq; tÞ�ð�q; tÞi for high and low �, with N the
number of particles and �ðq; tÞ the spatially Fourier-
transformed number density (here and throughout h� � �i
denotes averaging over different initial configurations).
Significant �-dependence is seen only at late times, with
the high density system displaying a weak signature of
static large-length structure, in contrast to low densities
where a peak emerges and grows in height and moves to
smaller q with time. This corresponds to the cluster coars-
ening regime to be discussed later.

For all �, a local minimum-local maximum pairing
emerges at short times and moves to lower q as the system
evolves, approximately as�t�1 for small t. This structural
signature of a linearly growing length is also evident in a
dynamic length extracted from the same-time velocity
correlations Cvvðr ¼ jx� � x�j; tÞ ¼ N hP�;�vðx�; tÞ �

vðx�; tÞi, normalized so that Cvvð0; tÞ � 1. Following
Olsson and Teitel [4], we identify the characteristic veloc-
ity correlation length �vðtÞ with the global minimum of
Cvv. The growth of �vðtÞ for different �, and examples of
Cvv, are given in insets to Fig. 2.
The data for all � can be collapsed onto two master

curves by scaling �vðtÞ by j���Jj�	 and t by j��
�Jj�
, with 	 ¼ 0:57� 0:05, 
 ¼ 0:6� 0:05, and �J ¼
0:843� 0:001, as demonstrated in Fig. 2. Note that we also

scale t by a noncritical factor �1=2 to improve collapse at
small times, in the spirit of corrections to scaling [7], but
this does not alter the exponents. The exponent 	 is con-
sistent with that already found for steady flow [4], but as
for that protocol, we cannot achieve reasonable collapse
using the exponent � 0:5 for the diverging length in linear
response [3], and conclude these two lengths are unrelated.
Indeed, for all �>�J, �vðtÞ / t and hence diverges with
time, whereas the linear response lengths only diverge for
� ! �þ

J . (Convergence of, e.g., pressure with system size
is achieved as long as the dynamics and statics have
decoupled by the time �v � L=2).
Instead, we propose that �vðtÞ corresponds to the length

over which the system approaches mechanical equilibrium,
i.e., force balance. To test this hypothesis, we assign to
each particle � the scalar quantity c � ¼ 1�
jP�f

��j=P�jf��j, where the sums are over all particles

� in contact with � and f�� is the elastic component of the
corresponding interaction force. Note that

P
�f

�� is the

resultant elastic force and
P

�jf��j a normalization factor,

so higher c means more balanced forces, with perfect

FIG. 1. The static structure factor Sðq; tÞ versus time for
(a) � ¼ 0:7 and (b) � ¼ 1:0. The time axis has been scaled
by t0 and the q-axes by qd ¼ 2�=hdi.
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FIG. 2 (color online). Collapse of the velocity correlation
lengths �vðtÞ after scaling �v by j���Jj�	 and t by j��
�Jj�
, with 	 ¼ 0:57, 
 ¼ 0:6, and �J ¼ 0:843. The upper line
(solid symbols) corresponds to �>�J, the lower line (open
symbols) to �<�J . The rightmost points of data sets close to
�J have been indicated. Dashed lines correspond to �v / t and
�v / 1� e�t=t1 and are intended to guide the eye. (Inset, lower
right) Precollapsed data, left to right for decreasing �. Each data
set is truncated when �vðtÞ � L=2. (Inset, upper left) Example of
Cvv for � ¼ 0:92.

PRL 102, 138001 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
3 APRIL 2009

138001-2



balance at c ¼ 1. Proceeding as before, we measure spa-
tial correlations Cc c ðr; tÞ in c ðx�Þ ¼ c � and extract a

characteristic length �c ðtÞ, as described in Fig. 3. As with

the velocity correlation length, �c initially grows linearly

and obeys the same scaling with j���Jj as for �v,
confirming they both reflect the same relaxation process,
although �c is statistically noisy and the reliable time

window correspondingly smaller. Nonetheless, this con-
firms that mechanical equilibrium is reached on a growing
length �ðtÞ � �vðtÞ � �c ðtÞ.

The master curves themselves give insights into the
physics underlying relaxation. For short times �vðtÞ / t
for all �, which, since there is no ballistic transport of
particles (see below), must be due to elastic propagation
through multiparticle contact networks. Inverting the axes
scaling gives a speed of sound c / j���Jj
�	, which is
finite at �J when 
 � 	, which is within error bars. Below
�J, �vðtÞ also initially grows linearly before saturating at a
finite value, at which point the data collapse fails and
cluster coarsening (which is not controlled by �J) begins.
The allows us to define an ‘‘unjamming’’ time when the
plateau is reached, which by reversing the axes scaling is
seen to diverge as �ð�J ��Þ�
.

Aging.—If �ðtÞ controls the relaxation as claimed, the
mean-squared displacement (MSD) �r2ðtw þ t; twÞ ¼
N�1

P
�jx�ðtw þ tÞ � x�ðtwÞj2 should be a function of

�ðtw þ tÞ=�ðtwÞ [9]. For �>�J, �ðtÞ / t, so we expect
�r2ðtw þ t; twÞ � gðt=twÞ corresponding to full aging.
Conversely, �ðtÞ approaches a �-dependent constant for
�<�J and critical aging should cease (although some
other form of aging may recur deep in the cluster coarsen-
ing regime). Examples of �r2ðtw þ t; twÞ above and below
�J are given in Fig. 4. For �>�J, the MSD takes a fixed
form which systematically scales to lower amplitudes and

later times with increasing tw. By contrast, for �<�J, no
such systematic scaling is apparent over the available time
window.
Aging has been experimentally observed in a range of

relaxing soft-matter systems [10–12], and we speculate
that the underlying mechanism may be the same as in
this athermal system. To test this, we must first quantify
the observed tw-scaling for �>�J. We first smooth the
data by fitting each tw-curve to the 3-parameter fit
MðtwÞ=f1þ ½t=�ðtwÞ��ag, as shown in Fig. 4(b). MðtwÞ
describes the variation in the overall amplitude of particle
transport with tw, �ðtwÞ is a relaxation time, and a is the
early time growth exponent. For large tw, both MðtwÞ and
�ðtwÞ are expected to scale algebraically with tw, so we fit
each to the form Að1þ tw=BÞbM;b� resp., to extract bM and
b�. The exponents a, bM, and b� for each � are plotted in
Fig. 5(a) Since there is little apparent variation with �, we
can improve the statistics by averaging over all �, giving
a ¼ 1:51� 0:01, bM ¼ �0:98� 0:02, and b� ¼
0:84� 0:05. This latter value would appear to suggest
subaging rather than the full aging b� � 1 expected for a
critical point [8], but we cannot yet rule out systematic
errors due to the chosen fitting functions.
It is now possible to compare these findings to the

equivalent quantities measured in the experiments [10–
12]. We find three areas of agreement: (i) Superdiffusive
particle transport �r2 � ta with a � 1:5, as inferred from
the speckle decay in experiments [10] and directly mea-
sured here [for t 	 �ðtwÞ]; (ii) aging, with experimental b�
in the range 0.77 to 1.8, compared to b� � 0:84 here; and
(iii) convective decay of the scattering vector, which has
been interpreted as evidence for the ballistic motion of
elastic strain deformations through the material [11,14].
Elastic waves are also present in our system, and while we
do not refute this interpretation of the data, it is interesting
to note that we observe a linearly growing length in this
model, namely, the correlation length �ðtÞ � t detailed
above. We hypothesize that this may be the true origin of
the experimentally observed ballistic growth law. In this
context, closer comparison with experimental data would
be desirable.
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FIG. 3 (color online). Characteristic length for force balance
�c ðtÞ versus time under the same scaling as Fig. 2 with the same

notation. The dashed line is �c ðtÞ / t. (Inset) Cc c ðr; tÞ ¼
N ½c ð0Þc ðrÞ � �c 2� at different times for � ¼ 0:92. �c ðtÞ is

identified with the rightmost maximum.

FIG. 4 (color online). Mean squared displacement �r2ðtw þ
t; twÞ for single runs at (a) � ¼ 0:8<�J and (b) � ¼
0:88>�J . In both cases, lines from top to bottom correspond
to geometrically increasing tw in the range 0:4< tw=t0 < 40. In
(b), the continuous lines are smoothing fits (see text).
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Late times.—For �>�J, �ðtÞ becomes arbitrarily large
and the system reaches global mechanical equilibrium. The
scaling properties of these static systems have been studied
by noninertial algorithms [2,3]. For comparison, in Table I,
we give the corresponding quantities for states generated
by our inertial algorithm. The agreement with previous
results confirms the robustness of the static state to the
preparation procedure. As our density window is somewhat
broad, extending to roughly 15% either side of �J, simple
scaling cannot be assumed [7] and a correction to scaling
was included when fitting.

For �<�J, the system unjams and an unstable cou-
pling between dissipation and density fluctuations leads to
system-wide mass separation into clusters and voids. In
this regime, the small-q peak in Sðq; tÞ is pronounced,
allowing a characteristic cluster length �cðtÞ to be ex-
tracted, as plotted in Fig. 5(b). The velocity correlation
length �v is also shown, and is similar to �c where their
time windows overlap, demonstrating that �ðtÞ tracks clus-
ter growth after unjamming. Over the available data win-
dow �cðtÞ � t0:26�0:03, towards the lower end of quoted
values for hard spheres [15], suggesting that subsequent
evolution is described by granular gas theory.

Conclusions.—The relaxation of freely cooling athermal
systems considered here support the view that the model

‘‘point-J’’ jamming transition is closer in nature to a
continuous phase transition than a glass transition: While
aging is common to both, the critical scaling of �ðtÞ in
Fig. 2, controlled by a single point�J, is expected only for
critical points. The correspondence is of course not com-
plete, and as for continuous shear [5], we expect the master
curves to depend on the interaction potential. Nonetheless,
we believe a fundamental understanding of this important
transition will best be approached from the standpoint of
critical point theory, and further modelling in this direction
would be desirable.
The author would like to acknowledge H. Tanaka for
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TABLE I. Fits of dimensionless pressure, P.E., excess coordi-
nation number, relative particle overlap and shear modulus at
t ¼ 1 to Að���JÞ�½1þ Bð���JÞ�, with a correction to
scaling / B. Numbers in brackets denote uncertainty in the
last digit. The bulk elastic modulus remains finite as � ! �þ

J .

Quantity Prefactor A �J Exponent �

Pressure 0.9(1) 0.8433(4) 1.03(4)

Potential Energy 0.05(1) 0.8434(4) 1.98(9)

z� ziso 4.3(4) 0.8432(4) 0.55(4)

Particle overlap 0.4(1) 0.8433(5) 1.03(4)

G=Gaffine 4.8(4) 0.844(1) 0.47(3)

FIG. 5 (color online). (a) Transport and aging exponents ver-
sus density. Smooth lines are the average over all �.
(b) Characteristic cluster size �c and velocity correlation length
�v at late times for � ¼ 0:7.
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