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We compare experimental resistivity data on Ga1�xMnxAs films with theoretical calculations using a

scaling theory for strongly disordered ferromagnets. The characteristic features of the temperature

dependent resistivity can be quantitatively understood through this approach as originating from the

close vicinity of the metal-insulator transition. However, accounting for thermal fluctuations is crucial for

a quantitative description of the magnetic field induced changes in resistance. While the noninteracting

scaling theory is in reasonable agreement with the data, we find clear evidence for interaction effects at

low temperatures.
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Over the past decade, Ga1�xMnxAs has been the most
studied ferromagnetic semiconductor [1,2]. The carrier-
mediated ferromagnetism in this material makes it attrac-
tive for proof-of-concept spintronic devices. They are also
good candidates for device integration with the technologi-
cally III–V semiconductors such as GaAs, where band gap
engineering allows systematic modulation of the carrier
density in heterostructure devices. It is important within
this general context to develop a fundamental understand-
ing of the interplay between carrier transport and magne-
tism in Ga1�xMnxAs.

One of the basic, but least understood, properties of
Ga1�xMnxAs is the temperature and magnetic field depen-
dence of its resistivity [3]. For typical Ga1�xMnxAs
samples the resistivity increases with decreasing tempera-
ture above the Curie temperature TC, but then it suddenly
drops below TC. This results in a resistivity peak at TC, a
feature that gradually broadens and shifts towards higher
temperatures; with an increasing external magnetic field
(see Fig. 1). The resistivity shows another upturn at lower
temperatures as well. In less resistive samples, the afore-
mentioned feature is less pronounced and one observes a
broad shoulder rather then a resistivity peak.

There have been a number of attempts aimed at explain-
ing the resistivity peak [3], invoking various mechanisms
such as scattering off critical fluctuations [4,5], the forma-
tion of magnetic polarons [6,7], ‘‘dynamical’’ mean-field
calculations [8], or the interplay with universal conduc-
tance fluctuations [9]. Nevertheless, these theoretical ap-
proaches have been successful only in addressing
particular ranges [10] or qualitative aspects [11] of the
data, and a theoretical framework that could quantitatively
explain all major characteristic features observed in
Ga1�xMnxAs has not been available so far [12].

Here we present an approach which is able to quantita-
tively account for all essential features of the experimental

data on more resistive samples: (i) the gradually increasing
resistance as the temperature is lowered towards TC;
(ii) the pronounced peak precisely at TC; (iii) the upturn
in resistance at low temperatures, together with the finite
resistance intercept for metallic samples; (iv) the precise
amount with which an external magnetic field depletes the
resistance peak at TC and shifts towards higher tempera-
tures; (v) the ‘‘noncrossing’’ constraint of the experimental
data [12]. These characteristic features are clearly visible
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FIG. 1 (color online). Comparison between the experimental
data and the theoretical results at magnetic fields H ¼ 0, 3, 6,
and 9 T. Dots represent experimental data, solid lines are
theoretical fits.
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in Fig. 1, where we show our experimental results for a
series of annealed and unannealed Ga1�xMnxAs samples
grown by molecular beam epitaxy, with the Mn concen-
tration (x) systematically varied between 0.0135 and 0.067.
The temperature dependent resistivity data shown in Fig. 1
were measured in different magnetic fields inside a com-
mercial cryostat (Quantum Design PPMS), with the mag-
netic field normal to the sample plane. Details of the
sample growth were reported elsewhere [13].

According to our theory the temperature and magnetic
field dependence of more resistive samples with TC <
100 K can be quantitatively understood as originating
from the vicinity of metal-insulator transition (MIT). To
support this, we first remark that the features mentioned
above are reminiscent of localization effects in interplay
with magnetism [14,15]. In fact, most III–V ferromagnetic
semiconductors are bad conductors because the charged
dopants (Mn for Ga1�xMnxAs) introduce large disorder
[16] and can even lead to the formation of an impurity
band [17]. As we show later, even for some of the annealed
and relatively highly doped samples, a simple upper esti-
mate gives kFl� 0:3, with kF the Fermi momentum and l
the mean free path. This value clearly suggests that it is
necessary to go beyond the weak disorder picture fre-
quently used in the literature [18,19]. Moreover, the size
of the low-temperature anomaly (always interpreted in
terms of interacting disordered electrons) is clearly corre-
lated with the behavior above TC, and also the size of
residual resistivity. The scaling theory presented here pro-
vides a natural explanation for these correlations and pro-
vides a way to extrapolate the low-temperature anomalies
to the range T � TC. The extrapolation captures not only
the size but also the detailed qualitative and quantitative
aspects of the magnetotransport properties in these
samples.

Similar resistivity anomalies have been also observed in
other types of magnetic semiconductors [20], as well as
some manganites [14,15], with various semiphenomeno-
logical frameworks available for explaining these phe-
nomena in terms of localization theory [15,21,22].
However, most of these approaches focus explicitly on
the localized phase, and are unsuitable for most measured
Ga1�xMnxAs samples that are not insulators, but poor
metals, close to the localization transition.

In Ref. [12], we developed a scaling theory of magne-
toresistance to describe transport properties of localized
Ga1�xMnxAs samples. Here we extend this theory to me-
tallic samples by making use of a slightly modified version
of the scaling approach applied for disordered interacting
conductors [23–25]. For noninteracting electrons, a scaling
theory can be constructed in terms of the dimensionless
conductance g and a length scale at which electrons lose
their coherence. In the presence of interactions, one needs
to introduce the dimensionless interaction parameters in
the triplet and singlet channels, �t and �s, respectively
[23–25]. For Ga1�xMnxAs an important simplification oc-
curs: Ga1�xMnxAs has a very large intrinsic spin-orbit gap,

�so � 4000 K. Furthermore, in the ferromagnetic phase
and in the vicinity of the Curie temperature, TC, the almost
classical S ¼ 5=2 spins of the Mn ions fluctuate slowly in
time, so at the time scales and temperatures of interest,
time reversal is also locally broken, even in the paramag-
netic phase. Consequently, Ga1�xMnxAs belongs to the
unitary class [12,26]. Then �t plays no role, and �s can
also be set to �s ¼ 1 [24,25]. As a result, the scaling of the
dimensionless conductance is described by a scaling equa-
tion,

d lng

dx
¼ �ðgÞ; (1)

where x ¼ lnð�Þ is a scaling variable with � ¼ �ðTÞ a
length scale, and due to the simplifications above, the
� function depends only on g itself [24,27]. In three
dimensions, there is a MIT characterized by �ðgCÞ ¼ 0,
with gC the critical conductance. For g > gC one has
�ðgÞ> 0, the conductor is metallic, and the dimensionless
conductance increases with increasing system size, while
�ðg < gCÞ< 0, and one finds an insulator.
If we knew the � function, we could compute the

resistivity as follows: suppose we know the typical dimen-
sionless conductance g0 at an energy scale T0 and at the
corresponding microscopic length scale, �0 ¼ �ðT0Þ. Then
the resistivity of a large three-dimensional conductor can
be computed by integrating the scaling equation up to a
length scale x ¼ lnð�ðTÞ=�0Þ and cutting the system to
small cubes of size � ¼ �ðTÞ to give

%ðT;HÞ ¼ h

e2
�ðTÞgC

gð�ðTÞ; g0=gCÞ : (2)

Note that here we compute the typical conductance [28].
Corrections due to universal conductance fluctuations can
give a singular contribution [9]. However, these corrections
are very small for magnets with a short mean free path such
as Ga1�xMnxAs. To compute gð�Þ we need to know the
beta-function. While this can and has been determined
numerically for a noninteracting unitary system [12], it is
not known for interacting electrons. Here we shall there-

fore use its asymptotic form on the metallic side, �ðgÞ ¼
1� gð0ÞC =g, with gð0ÞC the critical value of the conductance

to lowest order in the epsilon expansion [29]. The 1=g
asymptotics of �ðgÞ is a consequence of electron-electron
interaction, and is ultimately responsible for the

ffiffiffiffi
T

p
be-

havior of the resistivity at low T.
Furthermore, we need to know the connection between

the scale �ðTÞ and the temperature T. This can be estab-
lished by looking at the pole structure of the diffusion
propagator, DðTÞ � �2ðTÞTzðTÞ, and combining Eq. (2)
with the Einstein relation, �ðTÞ � ðe2=hÞNð0ÞDðTÞ, which
relates the density of states Nð0Þ and the diffusion constant
DðTÞ to the conductivity [24,25]. Being in the metallic
regime, with a good approximation, we can neglect the
energy-dependence of the renormalization factor z � 1,
and express gð�Þ as gð�Þ / �� / Nð0Þ�3T [24], that we

PRL 102, 137203 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
3 APRIL 2009

137203-2



rewrite as

�
�

�0

�
3 ¼ gð�=�0; g0Þ

g0

T0

T
; (3)

with T0 the energy scale corresponding to the scale �0.
With �ðgÞ and �ðTÞ at hand, we only need one more

ingredient, the microscopic resistivity, g0 ¼ g0ðh; tÞ, with
t ¼ T=TC and h ¼ g�BHS=TC denoting the dimension-
less temperature and magnetic field, respectively. In the
following, we shall use the simple approximation

g0ðt; hÞ ¼ g0ðmðt; hÞÞ � ~g0ð1þ qm2ðt; hÞÞ; (4)

where ~g0 is the conductance of the unpolarized system.
This approximation is well justified within a mean-field
description of the scattering on spin disorder [12], but it
also emerges quite naturally for other mechanisms [30]. In
the present formalism, however, the precise microscopic
origin of the m dependence of g0 is of secondary impor-
tance. The quadratic form in Eq. (4) provides a very good
approximation, and from the fits we find q � 0:5–0:7 for
all samples, in rough agreement with the results of
Ref. [30]. Critical fluctuations also contribute to g0.
According to our estimates, while they might give a sizable
contribution for samples (c) and (f), their contribution is at
least 1 order of magnitude too small to explain the ob-
served T dependence for T > TC for samples (a),(b),(d),
(f). Inclusion of these fluctuations in g0 would shift the
resistivity peak slightly above TC, and give rise to a singu-
larity in d%=dT (see inset of Fig. 2) [31]. As these con-
tributions are overshadowed by the terms already present
in our theory, we find it unnecessary to include them in the
current quantitative analysis.

It is difficult to reliably separate experimentally the
magnetization of the Ga1�xMnxAs film and that of the
paramagnetic substrate in high field measurements.
Furthermore, only magnetization curves at small magnetic

fields (H ¼ 50 Oe) were available. Therefore, instead of
using the experimental data, we determined the magneti-
zationmðt; hÞ in a finite field by performing simulations for
a diluted spin system. To simulate Ga1�xMnxAs we placed
magnetic ions with a given concentration at random posi-
tions of an fcc lattice following the procedure of Ref. [32].
We assumed an RKKY interaction between the Mn spins
and computed the magnetization curves mðt; hÞ by per-
forming a Monte Carlo simulation. This procedure repro-
duces the mðt; hÞ curves, which fit very nicely the
experimentally measured magnetization for h ¼ 0 (see
Fig. 2). Note, that the curves mðt; hÞ obtained this way
have no free fitting parameters.
We now have all ingredients to compute the magneto-

resistance. The temperature and magnetic field dependence
of the resistivity then originates from the temperature and
magnetic field dependence of the microscopic conductance
g0 and that of the scale �: The correlation length � be-
comes larger as T ! 0, and therefore the resistivity in-
creases. This results ultimately in the low-temperature
upturn of the resistivity and is also responsible for the
upturn of the resistivity above TC. At very low tempera-

tures this results in a � ffiffiffiffi
T

p
dependence [33]. Entering the

ferromagnetic phase, or polarizing the Mn moments with
an external field, on the other hand, increases g0, and hence
decreases the resistivity. It is the competition of these two
effects that yields the major part of the resistivity anomaly
at TC.
Equations (2)–(4) provide a self-consistent theoretical

description of the magnetoresistance in terms of three
parameters for every sample, �0, ~g0=gC, and the phenome-
nological parameter q. The latter is nearly sample in-
dependent: q � 0:6. Figure 1 shows the best fits obtained
in this way for six different samples (see fitting parameters
in Table I). For all samples we defined �0 and g0 as the
scale and dimensionless conductance at T0 � TC. The
position, the shift, and the amplitude of both the resistivity
maxima at TC as well as that of the low-temperature
anomaly are well reproduced. This provides further evi-
dence that for our samples both anomalies are related to the
vicinity of the MIT.
In Table I we also list the values of kFl we obtain from

the resistivity by assuming a spin 1=2 valence hole band of
effective mass m� ¼ 0:45me and a compensation of 50%.
Clearly, the values obtained in this way are inconsistent
with a weakly disordered free electron picture, and show a
clear correlation with %ðTCÞ and the microscopic conduc-
tance ~g0. There is no such simple correlation between
%ðTCÞ and x, since %ðTCÞ is sensitive to the details of
sample preparation or annealing protocol.
The fitted values of � are smaller than the thickness of

the films, W � 123 nm even at T ¼ 1 K, and they are in
good agreement with the values obtained in Refs. [34].
These samples are therefore clearly three dimensional from
the point of view of conductance properties down to these
temperatures. Also, � remains larger than the typical
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FIG. 2 (color online). Temperature dependence of the magne-
tization in an external in-plane magnetic field (H ¼ 50 Oe)
compared to our Monte Carlo results and assuming a RKKY,
Mn-Mn interaction. The inset shows the effect of critical fluc-
tuations.
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Mn-Mn separation and the mean free path (both �1 nm)
over the whole range of temperatures, thereby justifying
the scaling approach used here. Table I also shows the

theoretical estimate of �DrudeðTÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DDrude=T

p
where we

evaluated DDrude by using the Drude formula and the
density of states of a parabolic valence band with a renor-
malized mass. The values obtained in this way do not
depend too much on the specific sample, and, apart from
an overall factor, are in rough agreement with the values
extracted from the experimentally measured magnetoresis-
tance data.

In conclusion, we have presented a systematic study of
the resistivity of various Ga1�xMnxAs samples. We have
shown that even the annealed samples are very close to the
MIT. The magnetic field dependence of the resistivity
anomaly at TC as well as the low-temperature upturn of
the resistivity can be quantitatively described in terms of a
scaling theory, combined with Monte Carlo simulations.
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TABLE I. Characteristic parameters: x is the Mn concentration, %ðTCÞ is the resistivity at T0 � TC, and kF stands for the Fermi
momentum obtained by assuming a compensation of 50%. We computed kFl from the Drude formula. We also show the Fermi
wavelength �F of the nonmagnetic system, the fitted correlation length at T0 ¼ TC [�0] and at 1 K [�ð1 KÞ]. The dephasing length
�Drude (TC) is obtained using the Drude estimate. Finally we list the fitted values of ~g0=gC.

Sample number x (%) TC (K) %ðTCÞ �cm kFlðTCÞ �FðTCÞ (nm) �DrudeðTCÞ (nm) �fitð1 KÞ (nm) �fitðTCÞ (nm) ~g0=gC

(a) 010627D 1.35 42 27� 10�3 0.24 3.34 3.59 54.43 8.4 1.35

(b) 010629D 2.78 65 10� 10�3 0.51 2.64 4.38 70.94 8.8 2.85

(c) 010630C 3.91 90 4:5� 10�3 1.01 2.35 5.29 96.76 10.2 4.16

(d) 010701A 4.53 85 11� 10�3 0.39 2.24 3.43 94.03 10.2 4.01

(e) 010701C 5.87 110 3:6� 10�3 1.10 2.04 4.95 100.68 9.6 4.76

(f) 010702A 6.68 70 35� 10�3 0.10 1.97 1.82 73.62 8.8 1.70

PRL 102, 137203 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
3 APRIL 2009

137203-4


