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Disorder plays an important role in two dimensions, and is responsible for striking phenomena such as

metal-insulator transition and the integral and fractional quantum Hall effects. In this Letter, we

investigate the role of disorder in the context of the recently discovered topological insulator, which

possesses a pair of helical edge states with opposing spins moving in opposite directions and exhibits the

phenomenon of quantum spin Hall effect. We predict an unexpected and nontrivial quantum phase termed

‘‘topological Anderson insulator,’’ which is obtained by introducing impurities in a two-dimensional

metal; here disorder not only causes metal-insulator transition, as anticipated, but is fundamentally

responsible for creating extended edge states. We determine the phase diagram of the topological

Anderson insulator and outline its experimental consequences.
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Over the last 30 years, investigation of two-dimensional
systems has produced a series of striking phenomena and
states. A one-parameter scaling theory for noninteracting
electrons demonstrates that arbitrarily weak random dis-
order drives the system into an insulating state, known as
the Anderson insulator [1]. In the presence of strong spin
orbit coupling or interactions, a metallic state in two di-
mensions (2D) becomes possible, and a metal-insulator
transition occurs at a nonzero critical value of disorder
strength [2–4]. The application of a magnetic field, which
breaks time-reversal symmetry, creates dissipationless
edge states, resulting in the remarkable phenomenon of
the integral quantum Hall effect [5]. Interelectron interac-
tion produces the fractional quantum Hall effect [6], char-
acterized by topological concepts such as composite
fermions, fractional charge, and fractional statistics [7].
Disorder plays a crucial role in the establishment of the
quantized Hall plateaus.

The quantum Hall state constitutes a paradigm for a
topological state of matter, the Hall conductance of which
is insensitive to continuous changes in the parameters and
depends only on the number of edge states, which are
unidirectional because of the breaking of the time-reversal
symmetry due to the magnetic field. Recently, an analo-
gous effect was predicted in a time-reversal symmetric
situation: it was shown that a class of insulators, such as
graphene with spin orbit coupling [8] and an ‘‘inverted’’
semiconductor HgTe=CdTe quantum well [9], possess the
topological property that they have a single pair of counter-
propagating or helical edge states, exhibiting the phenome-
non of the quantum spin Hall effect. This ‘‘topological
insulator’’ is distinguished from an ordinary band insulator
by a Z2 topological invariant [10], analogous to the Chern
number classification of the quantum Hall effect [11]. The
edge states are believed to be insensitive to weak (non-
magnetic) impurity scattering [10] and weak interaction

[12,13]. The phase diagram for strongly-disordered topo-
logical insulators based on graphene has been studied
through numerical evaluation of the localization length
and the spin Chern number [14,15]. The prediction of
nonzero conductance in a band-insulating region of an
inverted HgTe=CdTe quantum well has been verified ex-
perimentally [16], although the origin of the observed
deviation from an exact quantization is not yet fully under-
stood. The topological insulator has also been generalized
to three dimensions [17–19].
In view of its importance in 2D, it is natural to ask how

disorder affects the stability of the helical edge states in the
topological insulator, which has motivated our present
study. As expected, we find that the physics of topological
insulator is unaffected by the presence of weak disorder but
is destroyed for large disorder. More surprisingly, however,
our results show that disorder can create a topological
insulator for parameters where the system was metallic in
the absence of disorder, and also when the band structure of
the HgTe=CdTe quantum well is not inverted (i.e., the gap
is positive). We call this phase topological Anderson insu-
lator (TAI) and comment on the feasibility of its experi-
mental observation.
The effective Hamiltonian for a clean bulk HgTe=CdTe

quantum well is given by [9]

H ðkÞ ¼ hðkÞ 0
0 h�ð�kÞ

� �
; (1)

where hðkÞ ¼ �ðkÞ þ dðkÞ � �, k ¼ ðkx; kyÞ is the two-

dimensional wave vector, � ¼ ð�x; �y; �zÞ are Pauli ma-

trices, and to the lowest order in k, we have dðkÞ ¼
ðAkx; Aky;M� Bk2Þ and �ðkÞ ¼ C�Dk2 with A, B, C

and D being sample-specific parameters for which we
take realistic values from the experiment [20]. The lower
diagonal block h�ð�kÞ is the time-reversal counterpart of
the upper diagonal block. This four-band model describes
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the band mixture of the s-type �6 band and the p-type �8

band near the � point. A band inversion results when the
gap parameter M changes its sign from positive to nega-
tive. It was predicted that this sign change signifies a
topological quantum phase transition between a conven-
tional insulating phase (M> 0) and a phase exhibiting the
quantum spin Hall effect with a single pair of helical edge
states (M< 0) [9]; experiments have confirmed some as-
pects of this prediction [16].

In an infinite-length strip with open lateral boundary
conditions, the solution of the four-band model H� ¼
E� is given by [21]

�ðkx; yÞ ¼ 1
T

� �
ð�þe�y þ��e��y þ �þe�y

þ ��e��yÞ;
whereT is the time-reversal operator,�� and �� are two-
component kx-dependent coefficients, and �, � are deter-
mined self-consistently by

�2 ¼ k2x þ F�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � ðM2 � E2Þ=ðB2 �D2Þ

q
;

�2 ¼ k2x þ Fþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � ðM2 � E2Þ=ðB2 �D2Þ

q
;

E2
��

2 þ E2
��

2 � �E�E��� ¼ k2xðE� � E�Þ2:
Here, we have F ¼ ½A2 � 2ðMBþ EDÞ�=2ðB2 �D2Þ,
E� ¼ E�Mþ ðBþDÞðk2x � �2Þ, E� ¼ E�Mþ ðBþ
DÞðk2x � �2Þ, � ¼ tanh

�Ly

2 = tanh
�Ly

2 þ tanh
�Ly

2 = tanh
�Ly

2 ,

and Ly is the width of the strip. This solution naturally

contains both helical edge states (�2 > 0) and bulk states
(�2 < 0), which are shown in Fig. 1 for three casesM< 0,
M ¼ 0, andM> 0. The edge states (red lines in Fig. 1) are
seen beyond the bulk gap for all cases, up to an M depen-
dent maximum energy. When M< 0, the edge states cross

the bulk gap producing a topological insulator. At M ¼ 0
the edge states exist only in conjunction with the lower
band, terminating at the Dirac point. For positive M there
are no edge states in the gap, producing a conventional
insulator [9]. This band picture has been verified also using
exact diagonalization of the tight-binding Hamiltonian
near the � point ðk ¼ 0Þ.
We next study transport as a function of disorder, with

the Fermi energy varying through all regions of the band
structure. For this purpose, we use a tight-binding lattice
model which produces the above Hamiltonian as its con-
tinuum limit [9], and following a common practice in the
study of Anderson localization, introduce disorder through
random on-site energy with a uniform distribution within
½�W=2; W=2�. We calculate the conductance of disordered
strips of width Ly and length Lx using the Landauer-

Büttiker formalism [22,23]. The conductance G as a func-
tion of disorder strength W is plotted in Fig. 2 for several
values of Fermi energy belonging to different band regions
forM< 0 andM> 0. The topological nature of the system
is revealed by the quantization of conductance at 2e2=h.
The following observations can be made.
The calculated behavior conforms to the qualitative

expectation for certain situations. For Fermi level in the
lower band, for both M< 0 and M> 0, an ordinary
Anderson insulator results when the clean-limit metal is

(a) (b) (c)

FIG. 1 (color). Band structure of HgTe=CdTe quantum wells
with finite width. (a) The ‘‘inverted’’ band structure case with
M ¼ �10 meV. Edge states (red lines) cross the bulk band
gap and merge into bulk states (gray area) at a maximum en-
ergy in the upper band. The green dashed lines mark the
boundary of bulk states. (b) The transition point between an
inverted band structure and a ‘‘normal’’ band structure with
M ¼ 0 meV. (c) The normal band structure with M ¼ 2 meV.
In all figures, the strip width Ly is set to 100 �m. The sample-

specific parameters are fixed for all calculations in this Letter to
be A ¼ 364:5 meVnm, B ¼ �686 meVnm2, C ¼ 0, D ¼
�512 meVnm2.

(a) (b) (c)

(d) (e) (f)

FIG. 2 (color). Conductance of disordered strips of
HgTe=CdTe quantum wells. The upper panels (a) to (c) show
results for an quantum well inverted with M ¼ �10 meV, and
the lower panels (d) to (f) for a normal quantum well with M ¼
1 meV. (a) The conductance G as a function of disorder strength
W at three values of Fermi energy. The error bars show standard
deviation of the conductance for 1000 samples. (b) Band struc-
ture calculated with the tight-binding model. Its vertical scale
(energy) is same as in (c) and the horizontal lines correspond to
the values of Fermi energy considered in (a). (c) Phase diagram
showing the conductance G as a function of both disorder
strength W and Fermi energy Ef. The panels (d),(e), and

(f) are same as (a),(b), and (c), but for M> 0. The TAI phase
regime is labeled. In all figures, the strip width Ly is set to

500 nm; the length Lx is 5000 nm in (a) and (d), and 2000 nm in
(c) and (f).
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disordered [green lines in Fig. 2(a) and 2(d)]. The con-
ductance in this case decays to zero at disorder strength
around 100 meV, which is about 5 times the conventional
hopping energy between nearest neighboring sites t ¼
�D=a2 � 20:5 meV, and much larger than the clean-limit
bulk band gap Eg ¼ 2jMj ¼ 20 meV. Here a ¼ 5 nm is

the lattice spacing of the tight-binding model. The topo-
logical insulator [red line in Fig. 2(a)] is robust, and
requires a strong disorder before it eventually yields to a
localized state. This is expected as a result of the absence
of backscattering in a topological insulator when time-
reversal symmetry is preserved [10].

The most surprising aspect revealed by our calculations
is the appearance of anomalous conductance plateaus at
large disorder for situations when the clean-limit system is
a metal without preexisting edge states. See, for example,
the blue lines in Fig. 2(a) (M< 0) and Fig. 2(d) (M> 0).
The anomalous plateau is formed after the usual metal-
insulator transition in such a system. The conductance
fluctuations [the error bar in Fig. 2(a) and 2(d)] are vanish-
ingly small on the plateaus; at the same time the Fano
factor drops to nearly zero indicating the onset of dissipa-
tionless transport in this system [24], even though the
disorder strength in this scenario can be as large as several
hundred meV. This state is termed topological Anderson
insulator. The quantized conductance cannot be attributed
to the relative robustness of edge states against disorder,
because it occurs for cases in which no edge states exist in
the clean limit. The irrelevance of the clean-limit edge
states to this physics is further evidenced from the fact
that no anomalous disorder-induced plateaus are seen for
the clean-limit metal for which bulk and edge states coex-
ist; those exhibit a transition into an ordinary Anderson
insulator.

The nature of TAI is further clarified by the phase
diagrams shown in Fig. 2(c) for M< 0 and in Fig. 2(f)
for M> 0. For M< 0, the quantized conductance region
(green area) of the TAI phase in the upper band is con-
nected continuously with the quantized conductance area
of the topological insulator phase of the clean limit. One
cannot distinguish between these two phases by the con-
ductance value. When M> 0, however, the anomalous
conductance plateau occurs in the highlighted green island
labeled TAI, surrounded by an ordinary Anderson insula-
tor. No plateau is seen for energies in the gap, where a
trivial insulator is expected. The topology of the TAI phase
as well as the absence of preexisting edge states in the
clean limit demonstrate that the TAI owes its existence
fundamentally to disorder.

The dissipationless character suggests existence of bal-
listic edge states in the TAI phase. To gain insight into this
issue, we investigate how the conductance scales with the
width of the strip. Figure 3 shows the calculated conduc-
tances of a strip as a function of its width Ly. In the region

before the TAI phase is reached, the scaled conductance
GLx=Ly, or conductivity, is width independent, as shown

in the inset of Fig. 3, which implies bulk transport. Within
the TAI phase, absence of such scaling indicates a total
suppression of the bulk conduction, thus confirming pres-
ence of conducting edge states in an otherwise localized
system.
We further examine the picture of edge-state transport

in the TAI phase in a four-terminal cross-bar setup by
calculating the spin-resolved transmission coefficients
Ts
pq (s ¼" , # ) between each ordered pair of leads p and

q (¼ 1, 2, 3, 4). Time-reversal symmetry guarantees that

T"
pq ¼ T#

qp, so it suffices to discuss only one spin compo-

nent s ¼" . Three independent coefficients, T"
21, T

"
31, and

T"
41, are shown in Fig. 4 as a function of the disorder

strength inside the cross region. The shadowed area marks

the TAI phase, where hT"
41i ¼ 1, hT"

21i ¼ hT"
31i ¼ 0, and all

transmission coefficients exhibit vanishingly small fluctu-

ations. From symmetry, it follows that hT"
41i ¼ hT"

24i ¼
hT"

32i ¼ hT"
13i ! 1, and all other coefficients are vanishing

small. These facts are easily understood from the pres-
ence of a chiral edge state for the spin up in the TAI
phase. Two consequences of this chiral edge state transport

are a vanishing diagonal conductance G"
xx ¼ ðT"

21 �
T"
12Þe2=h ¼ 0 and a quantized Hall conductance G"

xy ¼
ðT"

41 � T"
42Þe2=h ¼ e2=h, analogous to Haldane’s model

for the integer quantum Hall effect with parity anomaly

[25]. The quantized Hall conductance G"
xy reveals that the

topologically invariant Chern number of this state is equal
to one [11,26,27]. The absence of Hall current in a time-

reversal invariant system implies G#
xy ¼ �G"

xy ¼ �e2=h.
Thus, the chiral edge state in the spin down sector moves in
the opposite direction as the edge state in the spin up sector.
As a result, the total longitudinal conductance and Hall
conductance both vanish as in an ordinary insulator, but the

FIG. 3 (color). Width-dependence of the conductance in dis-
ordered strips of HgTe=CdTe quantum wells with several values
of strip width Ly and a length Lx ¼ 2000 nm. In the inset, the

conductance traces prior to the TAI phase (left-hand-side of the
dashed line) are scaled with the width of the strips as � ¼
GLx=Ly. The formation of the edge states is indicated by the

presence of conductance quantization 2e2=h. In this figure, M ¼
2 meV, and the Fermi energy Ef ¼ 20 meV.
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dimensionless spin Hall conductance Gs
xy ¼ ðG"

xy �
G#

xyÞ=ðe2=hÞ ¼ 2, resulting in quantum spin Hall effect [8].
Our work thus predicts quantized conductance in the

presence of strong disorder even for parameters for which
the system is an ordinary metal in the clean limit. The
difference between this phase and the previously studied
topological insulators is twofold. First, the Fermi energy
lies in a region of mobility gap in the bulk, as opposed to a
real gap; the mobility gap can be much larger than the
clean-limit band gap. Second, the presence of ballistic edge
states in the TAI phase does not rely on any band inversion,
and hence is not a consequence of band structure. Although
the physical origin of these edge states is not clear to us, it
is evidently related to the presence of strong disorder in the
system. To address this issue further, it is instructive to
examine the location of the TAI in the phase diagram by
comparing the localization length and the geometrical size
of the strongly disordered system. Our one-parameter scal-
ing analysis [28] has found that near the metal-insulator
transition, the localization length �ðW;LyÞ scales as

lnð�=LyÞ ¼ �ð1�W=WcÞðLy=aÞ1=	 þ ln�c, where Wc �
350 meV is the critical disorder strength in the thermody-
namic limit, 	 � 2:65 is the localization length exponent,
�c is the critical value of the renormalized localization
length �=Ly, and � is a dimensionless constant factor.

Evidently no interesting phase exists for W >Wc, where
the conductance is totally suppressed due to exponentially
decaying localization length. On the other hand, for W <
Wc the conductance is in principle determined by the ratio
of the strip length to �. For instance, in the situations
shown in Fig. 3, the localization length with the disorder
strength marked by the dashed line is estimated to be � �
2:1� 103 nm for Ly ¼ 250 nm and � � 1:5� 104 nm for

Ly¼750 nm. Considering the strip length Lx ¼ 2000 nm,

it is thus easy to understand the apparently reduced dip
with increasing Ly, prior to the establishment of the TAI

phase. This also leads to two interesting cases of the phase
diagram: one with the TAI phase surrounded by the normal
Anderson insulator phase [Fig. 2(f)] when the strip is long
enough, and the other with the TAI phase is connected to
the normal metal phase when the strip is wide enough. In
either case, the TAI phase is distinguished by the onset of
ballistic transport carried only by helical edge states. We
believe that HgTe=CdTe quantum wells, which have been
used to investigate topological insulators in the clean limit,
are a promising candidate also for an experimental deter-
mination of the phase diagram of the topological insulator
as a function of disorder and doping, because they enable a
control of various parameters through variations in the
quantum well thickness and gate voltage [29,30].
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FIG. 4 (color). Three independent spin-resolved transmission
coefficients, T"

21, T"
31, and T"

41, are plotted as functions of

disorder strength W. Standard deviations of the transmission
coefficients for 1000 samples are shown as the error bars. In
the shadowed range of disorder strength, all bulk states are
localized and only chiral edge states exist, which is schemati-
cally shown in the inset (for spin-up component only). The width
of leads is 500 nm and M ¼ 1 meV and Ef ¼ 20 meV.
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