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We present a microscopic theory describing the stimulated scattering of intersubband polariton

excitations in a microcavity-embedded two-dimensional electron gas. In particular, we consider the

polariton scattering induced by the interaction with longitudinal optical phonons. Our theory demonstrates

the possibility of final-state stimulation for the scattering of such composite excitations, accounting for the

deviations from ideal bosonicity occurring at high excitation densities. By using GaAs parameters, we

predict a quantum degenerate regime and lasing without electronic population inversion in an optical

pumping configuration.

DOI: 10.1103/PhysRevLett.102.136403 PACS numbers: 71.36.+c, 73.21.�b, 78.45.+h

The scattering of bosons from an initial to a final state
can be stimulated, i.e., enhanced, by the occupation of the
final state. This property is in stark contrast to the behavior
of fermions, such as electrons, whose scattering is Pauli
blocked by final-state occupation. In low-energy matter,
there are no elementary bosons, yet composite particles
acting like bosons can be obtained when an even number of
fermions are bound together, such as atoms containing an
even total number of nucleons plus electrons. In condensed
matter systems, the attractive interaction between two
electrons can give rise to bosonic particles. Examples are
Cooper pairs of electrons in metallic superconductors or
Coulomb bound electron-hole pairs (excitons) in semicon-
ductors. The strong coupling of an exciton with a micro-
cavity photon produces the so-called exciton-polariton
states, whose very small mass favors quantum degeneracy
and the onset of stimulated scattering, responsible for
exciton-polariton lasers [1] emitting in the near infrared.

Recently, a novel kind of cavity polariton excitations has
been discovered in a microcavity-embedded two-
dimensional electron gas [2] and an intense research activ-
ity is currently expanding [3–12]. These light-matter ele-
mentary excitations are the result of the strong coupling
between a microcavity photon mode and the transition
between two conduction subbands of a doped quantum
well (QW) system. In contrast to Cooper pairs or excitons,
intersubband excitations do not correspond to any bound
state produced by an attractive fermion-fermion interac-
tion. An intersubband excitation has a well-defined reso-
nance frequency simply because the QW conduction
subbands have parallel energy-momentum dispersions
(see inset in Fig. 1); a sharply peaked joint optical density
of states occurs already in the single-particle picture, in
contrast to the case of excitons, where instead Coulomb
electron-hole attraction is essential. This explains the re-
markable robustness of intersubband cavity polaritons even
at room temperature and the possibility to tailor their
properties just by tuning the size of the QW or the density
of the electron gas in the fundamental subband. Even if

intersubband excitations do not correspond to any bound
electronic state, they are still composed of an electron in an
excited subband and a hole in the Fermi sea. Hence, we
could regard them as composite bosons and expect the
occurrence of stimulated scattering.
In this Letter, we present a microscopic theory of the

stimulated scattering of intersubband cavity polariton ex-
citations. In particular, we will consider the polariton scat-
tering induced by the coupling with longitudinal optical

FIG. 1 (color online). A typical energy dispersion (in units of
the intersubband transition energy @!12) of intersubband cavity
polaritons versus in-plane wave vector (in units of the resonant
wave vector qres). Because of the interaction with bulk LO-
phonons, a polariton pumped in the upper polariton (UP) branch
can scatter into a final state (signal mode) in the lower polariton
(LP) branch by emitting a LO-phonon with energy @!LO

(36 meV for GaAs). The considered modes have Hopfield
coefficients �UP;q0 ¼ �LP;q ¼ 0:5. The dashed lines indicate

the same kind of scattering process by changing the in-plane
momentum of the initial state along the upper polariton branch.
Inset: the energy dispersion of conduction subbands of the doped
QW versus electron wave vector k.
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phonons (LO-phonons), which is typically the most im-
portant scattering channel affecting semiconductor inter-
subband transitions, while Coulomb interactions are
known to produce only moderate renormalization effects
[13]. Starting from the fermionic Hamiltonian for the QW
electronic system and by using an iterative commutation
procedure, we are able to determine the phonon-induced
polariton scattering for an arbitrary number of excitations
in the initial and final intersubband cavity polariton modes.
Our results indeed prove the possibility of final-state stimu-
lation of the intersubband cavity polariton scattering. Our
theory also provides the deviations from perfect bosonicity,
occurring at high excitation densities. We apply our results
to the case of a GaAs system with realistic losses and
consider the case of intersubband cavity polariton lasing
under resonant optical pumping.

We consider the Hamiltonian H ¼ Hlm þHphon, where

Hlm is the light-matter term for the cavity system, while
Hphon describes the coupling to bulk phonons via the

Fröhlich interaction [14]. Namely,

Hlm¼ X
k;j¼1;2

@!jðkÞcyj;kcj;kþ
X
q

@!cavðqÞayqaq

þX
k;q

@�ðqÞayqcy1;kc2;kþqþ@�ðqÞaqcy2;kþqc1;k;

Hphon¼
X
q;qz

@!LOðq;qzÞdyq;qzdq;qz þ
X
k;q;qz
i;j¼1;2

@Cij
q;qzdq;qzc

y
i;kþqcj;k

þ@Cij
q;qzd

y
q;qzc

y
j;kci;kþq; (1)

where cyj;k, a
y
q , and d

y
q;qz are the creation operators, respec-

tively, for an electron in the QW conduction subband jwith
in-plane wave vector k, a cavity photon with in-plane
wave vector q, and a LO-phonon with three-dimensional
wave vector (q, qz). Their respective energies are @!jðkÞ,
@!cavðqÞ, and @!LOðq; qzÞ ¼ @!LO (the wave vector de-
pendence of the LO-phonon energy is negligible), and their
phases are chosen in order to make the coupling coeffi-

cients �ðqÞ and Cij
q;qz real. Being all the interactions spin

conserving, we omit the spin degree of freedom for the
electrons. Here, for simplicity, we consider the case of a
single QW [15] embedded in the microcavity. The photon
polarization is meant to be transverse magnetic (TM) in
accordance with the selection rules of QW intersubband
transitions. Note that, neglecting the conduction band non-
parabolicity, the second subband dispersion is such that
!2ðkÞ ¼ !1ðkÞ þ!12, as depicted in the inset of Fig. 1.
Moreover, for typical photonic wave vectors q, we can
safely approximate !jðjkþ qjÞ ’ !jðkÞ. The elementary

excitations of the light-matter HamiltonianHlm are the two
polariton branches, whose creation operators are

py
�;q ¼ ��;qa

y
q þ ��;qb

y
q ; (2)

where � ¼ fLP;UPg is the polariton branch index, ��;q

and ��;q are real Hopfield coefficients describing the light

and matter component, respectively, while @!�ðqÞ are their

corresponding energies (see Fig. 1). byq is given by the

expression [3]

byq ¼ 1ffiffiffiffi
N

p X
k

cy2;kþqc1;k (3)

with N the total number of electrons in the doped QW. In
the ground state, the two-dimensional electron gas fills the
fundamental subband for k < kF, being kF the Fermi wave

vector. byq creates a bright intersubband excitation with in-

plane wave vector q, obtained when the two-dimensional
electron gas absorbs one cavity photon, as it can be de-
duced from the light-matter coupling in Eq. (1). We are
interested in calculating the polariton scattering rate in-
duced by the emission of a LO-phonon from an initial
polariton ‘‘pump’’ mode (branch �0 and in-plane wave
vector q0) to a final ‘‘signal’’ mode (branch � and in-plane
wave vector q). This kind of process is pictured in Fig. 1
for the case �0 ¼ UP and � ¼ LP. In order to have a
sizeable polariton-phonon interaction, both the initial and
final polariton modes must have significant electronic
components, quantified by j�UP;q0 j2 and j�LP;qj2. At the
same time, in order to have a good coupling to the extrac-
avity electromagnetic field (required for pumping and
detection), also the photonic components j�UP;q0 j2 and

j�LP;qj2 need to be significant. These conditions can be

simply met when the polariton energy splitting 2@�ðqresÞ�ffiffiffiffi
N

p
at the resonant wave vector qres [such as !cavðqresÞ ¼

!12] is a non-negligible fraction of the LO-phonon energy
(36 meV for GaAs). This situation is already realized in
recent microcavity samples [5,7,10,16] with midinfrared
intersubband transition frequencies. If we wish to investi-
gate the occurrence of stimulated scattering, we need to
evaluate the scattering rates for arbitrary occupation num-
bers m and n of, respectively, the initial and final polariton
modes. The emission of a LO-phonon can induce the
scattering of one polariton from the pump to the signal

mode, leading to a transition from the state pym
�0;q0p

yn
�;qjFi to

dy
q0�q;qz

pym�1
�0;q0 pynþ1

�;q jFi, where jFi is the ground state (the

N-electron ground state times the photon and phonon
vacuum). Therefore, we need to consider the squared
normalized matrix element @2jVn

mj2 given by

jhFjpnþ1
�;q p

m�1
�0;q0dq0�q;qzHphonp

ym
�0;q0p

yn
�;qjFij2

hFjpn
�;qp

m
�0;q0p

ym
�0;q0p

yn
�;qjFihFjpnþ1

�;q p
m�1
�0;q0p

ym�1
�0;q0 pynþ1

�;q jFi :

(4)

In order to evaluate Eq. (4), we can exploit the expres-
sion of the polariton operators in Eq. (2). To evaluate the
matrix elements, we need to commute the destruction
operators multiple times to the right side and exploit the
annihilation identity aqjF> ¼ bqjF> ¼ 0. The cavity

photons are elementary bosons obeying the standard com-

mutation rule ½aq; ayq0 � ¼ �q;q0 . Instead, intersubband exci-

tation operators are not elementary bosons and satisfy
modified commutation rules. We have found that
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½bq;byq0 �¼�q;q0 �Dq;q0 ;

Dq;q0 ¼�q;q0 � 1

N

X
jkj<kF

cy1;kc1;kþq�q0 �cy
2;kþq0c2;kþq;

(5)

where Dq;q0 is the operator describing the deviation

from the behavior of elementary bosons, originally

introduced in the context of excitonic composite bosons

[17]. By iteration, we have the following commutation

relations

½Dq;q0 ; bym
q00 � ¼ 2m

N
by
q00þq0�q

bym�1
q00 ; ½bq; bymq0 � ¼ mbym�1

q0 ð�q;q0 �Dq;q0 Þ �mðm� 1Þ
N

by
2q0�q

bym�2
q0 ;

½bmq ; byq0 � ¼ mð�q;q0 �Dq;q0 Þbm�1
q �mðm� 1Þ

N
b2q�q0bm�2

q :

(6)

Owing to the fact that typical photonic wave vectors q are much smaller (at least 2 orders of magnitude) than the Fermi
wave vector kF, we haveDq;q0 jFi ’ 0. Wewill thus assumeDq;q0 jFi ¼ 0 and neglect corrections of the order of jq� q0jkF
due to the electrons occupying the edge of the Fermi sphere. Exploiting Eq. (6), some algebra shows that the unnormalized
polaritonic matrix element hFjpnþ1

�;q p
m�1
�0;q0dq�q0;qzHphonp

ym
�0;q0p

yn
�;qjFi is given by

ðnþ1Þ!m!��;q
���0;q0 ðC22

q�q0;qz
�C11

q�q0;qz
Þ X

l¼0;...;n
h¼0;...;m�1

n
l

� �
m�1
h

� �
j��;qj2lj��;qj2ðn�lÞj��0;q0 j2hj��0;q0 j2ðm�1�hÞfn�l

m�h; (7)

where fnm ¼ n
mK

m�1;m
nþ1;n�1 þKm�1;m�1

nþ1;n and the quantityKn;s
m;r is defined by the relation n!m!Kn;s

m;r ¼ hFjbnqbmq0b
ys
q byr

q0 b
y
QjFi

with Q ¼ qðn� sÞ þ q0ðm� rÞ. Analogously, for the normalization factors in Eq. (4), we find

hFjpn
�;qp

m
�0;q0p

ym
�0;q0p

yn
�;qjFi ¼ n!m!

X
l¼0;...;n
h¼0;...;m

n
l

� �
m
h

� �
j��;qj2lj��;qj2ðn�lÞj��0;q0 j2hj��0;q0 j2ðm�hÞKn�l;n�l

m�h;m�h�1: (8)

Using the commutators in Eq. (6), we get the recurrence relation

K n;s
m;r ¼ �m;r�n;sþ1K

n�1;n�1
m;m�1 þ �m;rþ1�n;sK

n;n�1
m�1;m�1 �

s!r!

n!m!N
½nðn� 1ÞKs;n�2

r;m þmðm� 1ÞKs;n
r;m�2 þ 2nmKs;n�1

r;m�1�

that allows us to numerically evaluate Km;s
n;r . After some

algebra, Eq. (4) becomes

jVn
mj2 ¼ ðnþ 1ÞmBn

mj��;q��0;q0 ðC22
jq�q0j;qz � C11

jq�q0j;qzÞj2;
where Bn

m is a bosonicity factor depending on the coeffi-
cients Kn;s

m;r. Its expression is cumbersome, but it can be
obtained putting together Eqs. (4), (7), and (8). Such a
quantity depends on the Hopfield coefficients and on ex-
citation numbersm and n normalized to the total number of
electrons N in the ground state. In the inset of Fig. 2, we
report B0

m versus m=N obtained by a numerical evaluation
of our recursive relations. For normalized excitation den-
sities mþn

N smaller than 0.1, we find that Bn
m is well approxi-

mated by the formula Bn
m ’ 1� � mþn

N , where � depends
on the Hopfield coefficients of the polariton modes and
varies from 0 for pure photonic excitations to 1 for pure
matter ones. Using the Fermi golden rule and calling
A
qz
q ð!Þ the spectral function of a LO-phonon with three-

dimensional wave vector (q, qz), we have

�m;n
sc ¼2�

X
qz

Z
d!jVn

mj2Aqz
q�q0 ð!Þ�ð!�ðqÞ�!�0 ðq0Þþ!Þ;

where �m;n
sc is the number of polaritons per unit time

scattered from the pump mode (with occupancy m) into
the final signal mode (with occupancy n).

Using a Lorentzian shape of width �LO for the phonon
spectral function and neglecting the LO-phonon disper-
sion, we thus obtain

�m;n
sc ¼ m

S
ðnþ 1ÞBn

mj��;qj2j��0;q0 j2 !LO

�LO

4e2LQWF�

	@
:

(9)

This expression contains the effect of final-state stimula-
tion through the (nþ 1) term and the deviations from ideal
bosonic behavior through the bosonicity factor Bn

m. The
other parameters in the formula are S the sample surface,
LQW the QW length, and F� a form factor (depending on

� ¼ LQWjq� q0j) describing the overlap between the

conduction subband and the phonon envelope wave func-
tions [14]. For typical QW widths and photonic wave
vectors, F� ’ 0:1. For GaAs LO-phonons, the ratio !LO

�LO
�

100. In Fig. 2, we report the calculation of the spontaneous

in-scattering rate �m;0
sc (i.e., n ¼ 0, unoccupied final state)

for the process shown in Fig. 1 for a GaAs system with
@!12 ¼ 150 meV (midinfrared), LQW ¼ 10 nm, N=S ¼
1012 cm�2. In order to have a buildup of the occupation
number of the final state and to enter the regime of stimu-

lated scattering, the spontaneous in-scattering rate �m;0
sc

must be compared with the polariton damping rate given
by the formula
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�loss
�;q ’ j��;qj2�loss

cav;q þ j��;qj2�loss
12 ; (10)

where �loss
cav;q is the damping rate for the cavity mode (due to

the finite mirror transmission) and �loss
12 is the intersubband

excitation damping rate due to nonradiative processes.
Neglecting the pump depletion (relevant only above an
eventual stimulation threshold), we can write two rate
equations for the signal and pump mode occupation num-
bers, namely

dn

dt
¼�m;n

sc ��loss
�;qn;

dm

dt
¼
IpumpS

@!�0;q0
��loss

�0;q0m; (11)

where 
 is the polariton absorption coefficient at the pump
frequency and Ipump the optical pump intensity. From the

steady-state solution for n, we can calculate the threshold
pump density mthr=S to have a lasing instability. For n �
m, Bn

m ’ B0
m and �m;n

sc ’ ðnþ 1Þ�m;0
sc . The threshold pump

polariton density mthr=S is then given by the equation

�mthr;0
sc ¼ �loss

�;q . The steady-state solution for m gives the

threshold pumping intensity versus the polariton threshold

density Ithrpump ¼
�loss

�0 ;q0@!�0 ðq0Þ

 mthr=S. For a realistic value

�loss
�;q ¼ �loss

�0;q0 ¼ 5 ps�1, we obtain a threshold density for

the pump mode of 1:1� 1011 cm�2, i.e., m=N ¼ 0:11, as
indicated in Fig. 2. With a polariton absorption coefficient

 ¼ 0:4 [10], this gives a threshold pump intensity of
3:5� 104 W=cm2. This is approximately 2 orders of mag-

nitude smaller of what required to achieve electron popu-
lation inversion [18].
Note that the mechanism described here is different from

the standard phonon-assisted lasing based on stimulated
Raman photon scattering [19]: in such a traditional case,
the stimulation concerns the photon field. In our case, it is
the polariton field to be stimulated and the pump creates
real polariton excitations.
In conclusion, we have derived a theory for the stimu-

lated scattering of intersubband cavity polariton excita-
tions of a dense two-dimensional electron gas. The
intersubband cavity polariton excitations are composite
bosons arising from the strong light-matter coupling and
are not associated to any bound electronic states. We have
shown exactly how the bosonicity of these excitations is
controlled by the density of the two-dimensional electron
gas in the ground state. The present theory could pave the
way to the experimental demonstration of fundamental
quantum degeneracy phenomena and unconventional las-
ing devices without population inversion based on com-
posite bosons with controllable properties and interactions.

[1] J. Kasprzak et al., Nature (London) 443, 409 (2006).
[2] D. Dini et al., Phys. Rev. Lett. 90, 116401 (2003).
[3] C. Ciuti, G. Bastard, and I. Carusotto, Phys. Rev. B 72,

115303 (2005).
[4] R. Colombelli et al., Semicond. Sci. Technol. 20, 985

(2005).
[5] A. A.Anappara et al., Appl. Phys. Lett. 87, 051105 (2005).
[6] L. Sapienza et al., Appl. Phys. Lett. 90, 201101 (2007).
[7] A. A. Anappara et al., Appl. Phys. Lett. 91, 231118

(2007).
[8] M. F. Pereira, Phys. Rev. B 75, 195301 (2007).
[9] S. De Liberato, C. Ciuti, and I. Carusotto, Phys. Rev. Lett.

98, 103602 (2007).
[10] L. Sapienza et al., Phys. Rev. Lett. 100, 136806 (2008).
[11] S. De Liberato and C. Ciuti, Phys. Rev. B 77, 155321

(2008).
[12] S. De Liberato and C. Ciuti, Phys. Rev. B 79, 075317

(2009).
[13] D. E. Nikonov et al., Phys. Rev. Lett. 79, 4633 (1997).
[14] R. Ferreira and G. Bastard, Phys. Rev. B 40, 1074 (1989).
[15] In the case of NQW QWs, the polariton scattering rates due

to incoherent interaction with the LO-phonons are un-
changed. In fact, the intersubband excitation has an am-
plitude 1=

ffiffiffiffiffiffiffiffiffiffi
NQW

p
in each QW [3]. Sum over all the QWs in

the Fermi golden rule gives the same phonon scattering
rate as in the single QW case. The number of QWs NQW

instead affects the deviations from bosonicity. For a given
density N=S of electrons in each QW, an increase of NQW

improves bosonicity.
[16] G. Günter et al., Nature (London) 458, 178 (2009).
[17] For a review, see M. Combescot, O. Betbeder-Matibet, and

F. Dubin, Phys. Rep. 463, 215 (2008).
[18] O. Gautier-Lafaye et al., Appl. Phys. Lett. 71, 3619

(1997).
[19] R.W. Hellwarth, Phys. Rev. 130, 1850 (1963); J. Faist,

Nature (London) 433, 691 (2005).

0 0.5 1 1.5 2 2.5
0 

5 

10 

Pump density (1011 cm−2)

Sp
on

ta
ne

ou
s 

sc
at

te
ri

ng
 r

at
e 

(p
s−

1 )

0 0.5 1 1.5 2 2.5

m/N (× 10−1)

0 0.5 1

0

0.5

1

m/N

FIG. 2. Spontaneous scattering rate �m;n¼0
sc from the pumped

polariton to the signal polariton mode for the process depicted in
Fig. 1 versus the pump polariton density m=S. The electron den-
sity in the ground state is N=S ¼ 1012 cm�2. In the considered
range of excitation densities, m=N < 0:25, i.e., much smaller
than the onset of electronic population inversion. Other GaAs
parameters are given in the text. Inset: the solid line represents
the bosonicity factor Bn¼0

m versus m=N for the pump and signal
polariton modes considered in Fig. 1. For elementary bosons, Bn

m

is always 1. The dashed line is the same quantity for pure matter
excitations. For m=N � 1, deviations from perfect bosonicity
are negligible even in the case with only one QW [15]. For n �
m (signal much smaller than pump), Bn

m ’ Bn¼0
m and the stimu-

lated scattering rate is �m;n
sc ’ ðnþ 1Þ�m;n¼0

sc .
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