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The theory for time-resolved, pump-probe, photoemission spectroscopy and other pump-probe experi-

ments is developed. The formal development is completely general, incorporating all of the nonequilib-

rium effects of the pump pulse and the finite time width of the probe pulse, and including possibilities for

taking into account band structure and matrix element effects, surface states, and the interaction of the

photoexcited electrons with the system leading to corrections to the sudden approximation. We also

illustrate the effects of windowing that arise from the finite width of the probe pulse in a simple model

system by assuming the quasiequilibrium approximation.
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Pump-probe, femtosecond time-resolved (TR) photo-
emission spectroscopy (PES), and angle resolved PES
(ARPES) techniques can examine the excited state non-
equilibrium dynamics of electrons in solids [1], including
some strongly correlated electron systems [2–4]. In these
experiments, an intense pulse of radiation ‘‘pumps’’ the
system into a highly excited nonequilibrium state. After a
variable time delay, the system is subject to a weak
‘‘probe’’ pulse of higher energy photons, ejecting photo-
electrons which are detected with energy (and angle)
resolution.

Conventional (continuous probe beam) ARPES in lay-
ered materials can be well approximated [5] as a direct
measure of the momentum and frequency dependent
‘‘lesser’’ Green’s function [6] of the electrons in the layers
(i.e., their spectral function multiplied by the Fermi func-
tion). In more isotropic (three-dimensional) materials, the
spectral function gets averaged over kz, the component of
the momentum perpendicular to the layers. The conven-
tional interpretation of TR-PES is that the pump creates
‘‘hot electrons’’ in quasiequilibrium at a high ‘‘effective
electronic temperature (Tel)’’ compared to the lattice (pho-
nons), which then cool gradually, so that the probe PES
essentially measures equilibrium lesser functions at differ-
ent values of Tel for different time delays between the
pump and the probe pulses. For example, recent TR-
ARPES experiments [3] on the layered material 1T-TaS2
[believed to be an unusual, charge density wave (CDW)-
induced, Mott insulator,] were interpreted in this way, us-
ing a dynamical mean-field theory (DMFT) [7] treatment
of the 2-d Hubbard model for a range of temperatures and
fillings, chosen as fitting parameters, for the different time
delays used. Such an approach, while reasonable in many
contexts, avoids addressing two important questions con-
nected with (1) the nonequilibrium dynamical aspects of
the experiment, and (2) the effects arising from the finite

width of the probe pulse (in the time domain). Here, we
provide a theory that addresses all of these by extending the
‘‘one-step’ treatment of continuous beam ARPES in equi-
librium systems [8,9] to the present, nonequilibrium
context.
We assume that the system,modeled by a quantummany-

body HamiltonianH , is in equilibrium at a temperature T
before the pump is turned on. It is represented in the distant
past (t ! �1) by an ensemble of the (many-body) eigen-
states j�ni of H , present with the Boltzmann probability
�n ¼ Z�1 exp½�En=ðkBTÞ� where En are the correspond-
ing energy eigenvalues, and Z ¼ P

n exp½�En=ðkBTÞ� is
the partition function. Turning on the pump pulse modifies
H into a time-dependent Hamiltonian H pumpðtÞ whose
precise form depends on the way one models the system
and its interaction with the pump radiation [represented by
the vector potential Apumpðr; tÞ whose t dependence in-

cludes its turning on and off]. Then, at time t0, just before
the probe is turned on, the system is represented by the en-
semble of states j�I

nðt0Þi � Uðt0;�1Þj�ni (with the same

Boltzmann probability as above), where Uðt0; tÞ �
T tfexp½�i

R
t0
t dt1H pumpðt1Þ=@�g is the unitary time devel-

opment operator of the system in the presence of the pump
radiation. Here, T t is the time ordering operator and
fj�I

nðt0Þig acts as the ensemble of ‘‘initial’’ states for the
quantum transitions generated by the probe pulse.
Similarly, when the probe is turned on, the Hamiltonian

is modified to H pumpðtÞ þH probeðtÞ to appropriately in-

clude the effects of the probe pulse. A particular ‘‘initial’’
state j�I

nðt0Þi therefore evolves at any later time t to the

‘‘final’’ state j�F
n ðtÞi � Ûðt; t0Þj�I

nðt0Þi, where Ûðt;t0Þ�
T texp½�i

R
t
t0
dt1fH pumpðt1ÞþH probeðt1Þg=@� is the full

time development operator in the presence of the probe
(and pump) pulse. If we have nonoverlapping pump and
probe pulses, H pumpðt1Þ ¼ H for t1 > t0.
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We model the photocurrent operator representing the
detector, designed to detect photoelectrons of momentum
k around ke and placed at a macroscopic distance Rd

outside the sample, as Jd ’ ð@ke=meÞcyke;Rd
cke;Rd

where

cyke;Rd
creates an electron in a wave-packet state with a

momentum space wave function �ke;Rd
ðkÞ which is

sharply peaked at ke, but is nevertheless localized in real
space around Rd. The measured photocurrent at time t is
then hJdiðtÞ ¼

P
n�nh�F

n ðtÞjJdj�F
n ðtÞi.

Typically, the pump pulse is so intense that it needs to be
treated nonperturbatively, but the probe pulse is weak
enough that H probeðtÞ can be treated by perturbation the-

ory. Hence, to leading order

Ûðt; t0Þ ’ Uðt; t0Þ � i

@

Z t

t0

dt1Uðt; t1ÞH probeðt1ÞUðt1; t0Þ:
(1)

We assume the photons in the pump radiation have ener-
gies smaller than the work functionW of the sample and do
not photoemit. (This also makes it reasonable to treat the
pump vector potential as classical, and use the Peierls’
substitution when low-energy electrons have a tight bind-
ing band structure.) Hence, the photoemission process
arises only from the second term in Eq. (1). The leading
contribution to the measured photocurrent is of second
order [10] in H probeðtÞ, and using Eq. (1) and the proper-

ties of U, we obtain

hJdiðtÞ ¼ 1

ð@Þ2
Z t

t0

dt2
Z t

t0

dt1hUð�1; t2ÞH probeðt2ÞUðt2; tÞ

� JdUðt; t1ÞH probeðt1ÞUðt1;�1ÞiH ;

hOiH � X
n

�nh�njOj�ni ¼ Z�1Tr½e�H =ðkBTÞO�: (2)

Let cy�kk create an electron in an eigenstate of the one-

electron (e.g., LDA) band structure Hamiltonian H 0 ap-
propriate to the sample with the surface [11], with energy
��kk . We assume a flat surface (the x-y plane) so that the

eigenstates can be labeled by kk, the wave vector compo-

nent parallel to the surface, and another index or quantum
number �, which can, in principle, include surface states as
well. Then, the component of H probeðt1Þ corresponding to

the absorption of a photon of momentum @q (frequency
!q ¼ cq and annihilation operator aq) is [12]X

�;�0;kk

sðt1Þe�i!qt1Mqð�; �0;kkÞcy�0kkþqk
c�kkaq: (3)

Here, for simplicity, we have dropped the spin indices of
the electron operators. The probe pulse shape function,
sðtÞ, describes the temporal profile of the probe pulse,
including its turning on and off. M is the one-electron
matrix element h�0k0

kj½ie@AprobeðrÞ=mec� � rj�kki, where
AprobeðrÞ � AqðrÞ expðiq � rÞ, with the slowly varying

AqðrÞ describing the spatial profile of the probe pulse

[including its attenuation as it traverses the sample].

Conservation of momentum components parallel to the
surface requires k0

k ¼ kk þ qk, while the detailed proper-

ties ofM depend on the modeling of the sample, especially
its surface [13]. Note that this choice of the one-electron
basis of H 0 is just convenient for representing H probeðtÞ;
all many-body and nonequilibrium effects are incorporated
in our expressions for the photocurrent derived below.
The terms in Eq. (3) can excite an electron from an

occupied level (�kk) inside the system to a high-energy

band level (�0k0
k). When ��0k0

k
��, where � is the chemi-

cal potential, exceeds W, a so-called time-reversed LEED
(or TRL) state [11] is created, that has a wave function
component outside the sample which is an outgoing plane
wave of wave vector k0ð�0Þ � ½k0

k; k
0
zð�0Þ�, with �0 and k0z

related by the condition ��0k0
k
�� ¼ ð@k0Þ2=ð2meÞ þW.

This electron is detectable as a photoelectron outside
the sample, with momentum @k0 unless inelastic col-
lisions within the sample reduce its kinetic energy. These
processes can be taken into account as follows. The
wave-packet state for the detected photoelectron has
exactly the same component in the TRL state j�0k0

ki
as in the plane wave state jk0ð�0Þi. Hence, cyke;Rd

¼P
�0;k0

k
�ke;Rd

ðk0ð�0ÞÞcy
�0k0

k
. Using this and Eqs. (2) and (3),

we find

hJdiðtÞ¼@ke

me

X
�;�0;kk;k0

k

��
ke;Rd

½kð�Þ��ke;Rd
½k0ð�0Þ�PðtÞ;

PðtÞ� 1

ð@Þ2
X

�1;�
0
1
;kk1

X
�2;�

0
2
;kk2

M�
qð�2;�

0
2;kk2ÞMqð�1;�

0
1;kk1Þ

�
Z t

t0

dt2
Z t

t0

dt1sðt2Þsðt1Þei!qðt2�t1Þhcy�2kk2ðt2Þ

�c�0
2kk2þqk ðt2Þcy�0k0

k
ðtÞc�kk ðtÞcy�0

1kk1þqk
ðt1Þ

�c�1kk1ðt1ÞiH : (4)

Here, cy
�0
1kk1

ðt1Þ, c�kk ðtÞ, etc., are the electron creation and

destruction operators in the Heisenberg picture appropriate
to H pumpðtÞ:

cy
�0
1
kk1

ðt1Þ � Uð�1; t1Þcy�0
1
kk1

Uðt1;�1Þ;
c�kk ðtÞ � Uð�1; tÞc�kkUðt;�1Þ; etc:; (5)

and for simplicity of notation, we have not shown all the
variables that P depends on. Equation (4), the central new
result of this Letter, is a formally exact expression for the
measured pump-probe photocurrent, in terms of a nonequi-
librium, contour-ordered, three-particle Green’s function
[14] on the Kadanoff-Baym-Keldysh contour in the com-
plex time plane going from�1 to t back to�1, with t1 on
the outward real contour and t2 on the return real contour
[15]. In practical calculations, e.g., using DMFT, a third
contour down the imaginary axis to�i� is often needed in
order to evaluate the relevant operator averages.
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In many experimentally relevant contexts, it is reason-
able to assume that the high-energy TRL state electrons
photoexcited by the probe interact weakly with the other
degrees of freedom in the sample, their dynamics being

primarily determined by an effective (e.g., LDA) band
Hamiltonian H 0 because their energy is far removed
from the Fermi level. In that case, one can approximate
the expectation value in Eq. (4) as the factorized product

hcy�2kk2ðt2Þc�1kk1ðt1ÞiH hc�0
2
kk2þqk ðt2Þcy�0k0

k
ðtÞiH 0

hc�kk ðtÞcy�0
1
kk1þqk

ðt1ÞiH 0

¼ hcy�2kk2ðt2Þc�1kk1ðt1ÞiH��0
2
;�0��0

1
;��kk2þqk;k0

k
�kk1þqk;kke

i½ð��0k0k��Þðt�t2Þ�ð��kk��Þðt�t1Þ�
;

(6)

where the expectation values of the electron creation and annihilation operators in the high-energy states are evaluated with
respect to the single-particle HamiltonianH 0 (and hence can be factorized and evaluated using Wick’s theorem), but the
low-energy states are evaluated with respect to H . We can further simplify this by neglecting the k widths of �ke;Rd

ðkÞ,
whence kð�Þ ’ k0ð�0Þ ’ ke, and � ¼ �0 ¼ �e such that ��ekek �� ¼ ð@keÞ2=ð2meÞ þW � @!q � @!, with @! being the
excitation energy remaining in the system after the photoemission process. Furthermore, photon wave-vectors are orders of
magnitude smaller than the electron wave vectors, and can be ignored. Hence, we obtain

PðtÞ ’ �i
1

ð@Þ2
X
�1;�2

M�
qð�2; �e;kekÞMqð�1; �e;kekÞ

Z t

t0

dt2
Z t

t0

dt1sðt2Þsðt1Þei!ðt2�t1ÞG<
�1kek;�2kek ðt1; t2Þ; (7)

where G< is the well-known two-time (nonequilibrium)
lesser Green’s function [6] given by

G<
�1kek;�2kek ðt1; t2Þ � ihcy�2kek ðt2Þc�1kek ðt1ÞiH : (8)

The dominant contribution to PðtÞ in Eq. (7) ultimately
comes from quantum numbers �1 and �2 corresponding to
the low-energy bands near the Fermi level, extending up to
the bands that electrons get excited into by the pump laser.
As we show elsewhere [16], the result in Eq. (7) can also be
obtained using a scattering description of the photoemis-
sion process and invoking the sudden approximation. But
the treatment presented above, leading to Eq. (4), is much
more general, and permits, in principle, processes that are
neglected in the sudden approximation.

In the traditional context of a continuous probe beam
ARPES for a sample in equilibrium, G<ðt1; t2Þ is only a
function of (t1 � t2) and sðtÞ ¼ 1. In this case, PðtÞ di-
verges for large (t� t0), and is better interpreted in terms
of a constant rate of detection of photoelectrons pro-
portional to limt!1 limt0!�1 PðtÞ=ðt� t0Þ, given by

�i
P

�1;�2
M�

qð�2; �e;kekÞMqð�1; �e;kekÞ ~G<
�1kek;�2kek ð!Þ

where the tilde denotes a Fourier transform (FT) to the
frequency representation. Furthermore, in a clean, highly
anisotropic, layered system where all the electrons that are
photoexcited arise from one band, and surface states and
matrix element effects can be ignored, the � labels can be

dropped, whence this rate is proportional to �i ~G<
kek ð!Þ ¼

Akek ð!Þfð!Þ which is the standard result [5]. However, the
formalism developed above contains all the ingredients
necessary to go beyond this.

Next, we explore the consequences of the finite width of
the probe pulse envelope sðtÞ in the context of a material
that can be well approximated by the d ! 1 Hubbard
model, for which the DMFT is exact [7]. Here, electrons

hop with amplitude t�Hub=2
ffiffiffi
d

p
(t�Hub set equal to 1, and

serving as the unit of energy in the following discussion)

between nearest-neighbor sites on an infinite dimensional
(d ! 1) hypercubic lattice, and two electrons on the same
site with opposite spin have a repulsive energy U. We
consider only TR-PES, i.e., the angle integrated P, hPik̂e ,
and approximate the matrix element M [13] as a constant.
We also use the quasiequilibrium approximation. Then,
hPik̂e is calculable as the frequency domain convolution

lim
t!1 lim

t0!�1hPik̂e ¼ �i
Z

d� ~G<ð!� �Þj~sð�Þj2=2� (9)

where ~sð�Þ is the FT of sðtÞ, and ~G<ð!Þ is the equilibrium,
local lesser Green’s function at temperature Tel.

FIG. 1 (color online). Photoemission spectra at half-filling
with U ¼ 3. The temperatures are T ¼ 0:00539 for panel (a)
and T ¼ 0:0189 for panel (b). The continuous beam photoemis-
sion curve is in black and is labeled by G<ð!Þ, while the pump-
probe curves for different probe widths are in other colors and
labeled by their widths �. In panel (a), symbols are used to
differentiate the different curves. In panel (b), the curves with
� ¼ 10 and the lesser Green’s function are essentially indistin-
guishable except for some kinks near ! ¼ 0. The � ¼ 5 curve
has a slightly lower peak, but then merges with the others, while
the � ¼ 2 curve is clearly distinguished.
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We work at half filling and solve the DMFT problem
using the numerical renormalization group [17] for the
retarded Green’s function with standard procedures
[7,17]. We take the shape function sðtÞ to be a Gaussian
sðtÞ ¼ exp½�ðt� �tÞ2=�2�=ð� ffiffiffiffi

�
p Þ with a varying width �

and pump-probe time delay �t (which sets Tel). Our PES
signals are normalized so that the integrated weight in all
spectra are identical.

In Fig. 1, we compare the continuous beam PES [sðtÞ ¼
1] with the pump-probe PES for varying �, for U ¼ 3
corresponding to a strongly correlated metal. Coarse
high-energy features of the spectra are determined reason-
ably well for � * 5, but sharp features like the quasipar-
ticle peak require much larger � to be accurately captured.
In Fig. 2, where we compare the metallic PES for T ¼
0:00539 and � ¼ 5 (dashed line) with the continuous beam
PES for various temperatures, we see that the spectral
shape due to the broadening effect of a finite probe pulse
width is qualitatively different from that due to thermal
broadening. The high temperatures needed to broaden the
quasiparticle peak to the same extent as the windowing
effect also generate higher energy upper Hubbard band
contributions that the windowing effect alone does not.

In conclusion, we have developed a formally exact
many-body theory for pump-probe TR-ARPES that also
takes into account two new effects: (i) the nonequilibrium
dynamics induced by the intense pump pulse and (ii) the
windowing effect due to the finite width of the probe pulse.
Under simplifying assumptions the PES signal including
all the nonequilibrium effects can be represented in terms
of integrals of the lesser Green’s function in the presence of
the pump pulse. The broadening effect from the windowing
can make it difficult to extract sharp spectral features
unless the pulse width is wide enough in the time domain.

This effect is qualitatively different from the broadening
caused by raising T.
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