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Experiments with cold atoms trapped in optical lattices offer the potential to realize a variety of novel

phases but suffer from severe spatial inhomogeneity that can obscure signatures of new phases of matter

and phase boundaries. We use a high temperature series expansion to show that compressibility in the core

of a trapped Fermi-Hubbard system is related to measurements of changes in double occupancy. This core

compressibility filters out edge effects, offering a direct probe of compressibility independent of

inhomogeneity. A comparison with experiments is made.
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The search for stable quantum many-body phases forms
the basis of quantum condensed matter, quantum chemis-
try, and elementary particle physics. Stable states often
arise as a consequence of energy gaps that set an energy
scale for resilience. Examples of gapped condensed matter
phases include superconductors and Mott insulators. In
these phases, gaps arise in the presence of (or as a result
of) interactions to form many-body states that resist small
perturbations from the environment. Gaps play a role in
spectacular quantum effects in the solid state including
zero resistance in superconductors or a dramatic rise in
resistance in Mott insulators. The high Tc compounds are
believed to harbor both states in a possible union [1] that
leads to an enhancement of the superconducting energy
gap and therefore Tc in a doped correlated Mott insulator.
Electronic models of the high Tc compounds (repulsive
two-dimensional Fermi-Hubbard models) are believed to
have rich phase diagrams and may even exhibit this unique
type of superconductivity. Yet the low temperature solution
of the two-dimensional Hubbard model remains elusive.
Recent work [2,3] seeks to emulate the Hubbard models in
an ideal setting, with cold atoms in optical lattices, in a
search for a superconducting state and other phases.

Optical trapping and cooling of cold atomic gasses
allows the preparation of nearly ideal manifestations of
Bose and Fermi-Hubbard models in the laboratory [4–7]. A
broad variety of many-body phases has been predicted [8].
However, few techniques exist for experimentally observ-
ing new phases and their properties. Techniques currently
in use include time-of-flight imaging of the momentum
distribution (predominately in bosonic systems) and noise
correlations [9], optical molecular spectroscopy of pair
correlation functions [10] and Bragg spectroscopy [11].
Proposed techniques include using edge currents in trapped
rotating lattices [12] or Fourier sampling of time-of-flight
images to reveal new correlation functions [13].

However, harmonic trapping potentials, inherent in most
experiments, present a major difficulty in realizing and

observing bulk phases of the Hubbard model with optical
lattice experiments: e.g., a large portion of the sample
becomes compressible near the edges even when a Mott
insulator has formed in the center. Extracting the physics of
a homogeneous bulk system by separating the approxi-
mately homogeneous behavior in the flat center of the
trap from the surrounding inhomogeneous system is an
intrinsically difficult challenge in these experiments and
for comparison to theory [14–20].
In this Letter, we use a high temperature series expan-

sion [21–23] to directly relate recent experiments [6] to (a
measure of) ‘‘core compressibility,’’ the compressibility of
the atoms near the center of the sample, excluding the
edges. We argue that this measure of the core compressi-
bility can be used to detect stable, incompressible phases
and offers a valuable tool for mapping out phase diagrams.
We begin our analysis with the Fermi-Hubbard model of

cold fermionic atoms in optical lattices for equal pseudo-
spin populations where the spin index refers to different
hyperfine levels:
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Here, the site dependent chemical potential, �i ¼
�� �R2

i varies with the discrete spatial coordinates,
Ri ¼ ðix; iy; izÞ, as a result of the parabolically confining

laser beam waist and magnetic trapping potentials. The
s-wave interaction yields an on-site repulsive interaction,
of strength U, which is tunable via a Feshbach resonance.
The hopping between nearest-neighbor sites, t, changes
with the lattice depth and is therefore tunable with the laser

intensity. The number operator ni ¼ n"i þ n#i measures the
number of fermions at a site i.
For our quantitative calculations we use parameters

relevant to recent experiments. Reference [6] places two
hyperfine species of 40K in a simple cubic optical lattice
with low hopping t ¼ 0:05–0:2 kHz, a tunable on-site
term, U ¼ 0–9 kHz and � ¼ 0:003–0:005 kHz. Here and
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in the following, we work in kHz by setting h ¼ 1 and
kB ¼ 1. We also set � ¼ 0:00384 kHz, unless otherwise
noted, and choose all other parameters to make contact
with Ref. [6]. Suitably chosen chemical potentials, ��
1–7 kHz, yield total particle numbers, N � 104–106.
Estimates in Ref. [6] find that the largest unknown, lattice
temperature, can be kept below U with values as low as
T � 0:8 kHz and possibly lower.

To theoretically analyze observable signatures of incom-
pressibility in a trapped Hubbard model, we use a high
temperature series expansion of the grand partition func-
tion Z ¼ Tr expð��HÞ about the atomic, t ¼ 0, limit.
Such high temperature series expansions have a long his-
tory [23] and yield exact results for thermodynamic quan-
tities of the Hubbard model in the limit �t � 1. Note that
all experiments done with fermions in optical lattices
currently lie in this high temperature regime when parame-
ters are tuned to U � t. The high temperature series there-
fore offers a quantitatively reliable tool to compare to
experiments. Our approach complements recent dynamical
mean field studies that can be applied to lower tempera-
tures [24]. We use up to 10th order in the expansion of the
grand potential [21], � ¼ � lnðZÞ=�, to extract thermo-
dynamic quantities for a uniform system (� ¼ 0). In terms

of the series coefficients, XðmÞ, the expansion reads

� � ~� ¼ lnz0 þ
X1

m¼2

ð�t=z0ÞmXðmÞðw; �Þ; (2)

where � ¼ expð��Þ is the fugacity of the uniform system,
~� � �=N, w ¼ expð��UÞ and z0 ¼ 1þ 2� þ �2w is
the partition function of a single site in the atomic limit.
In a local density approximation (LDA), we assume that
each site of the trapped system can be approximated with
parameters for a uniform system. With the replacement
� ! xi ¼ expð��iÞ, the LDA becomes �LDA ¼ P

i�i.
To show that the LDA is an excellent approximation for

the high temperature regime studied here, we also compute
the exact second order contribution to the grand potential
in a trapped system:

� �� ¼ X

i

ðlnz0;iÞ þ ðt�Þ2X
hi;ji

~Xð2Þ
ij z

�2
0;i þOðð�tÞ4Þ; (3)

where

~X ð2Þ
ij ¼ I�;��½xi þ x2i xjw� þ I��;�½xj þ x2jxiw�

þ xixj½I���U;�þU þ I��U;��þU�
þ x2jwI�þU;���U þ x2i wI��þU;��U: (4)

In the above expression, the quantities � � �i ��j and

I�;�� � ½expð��Þ � 1� ���=ð��Þ2 simplify to the uni-

form limit for � ¼ 0 and I0;0 ¼ 1=2. The LDA is recovered

in the limit ~Xij ! XLDA
r � 2ð1� wÞx2r=�Uþ xrð1þ

x2rwÞ yielding a simple expression for the grand potential
of a trapped system in the continuum approximation (valid
for large particle numbers): ���LDA � R

ddr½lnz0;r þ
zðt�=z0;rÞ2XLDA

r �, where z is the coordination number.

This second order high temperature expansion holds for
any bipartite lattice in any dimension. As we show below,
there are no discernible differences between the LDA and
the exact second order results for the parameters studied
here.
We first focus on the compressibility which can distin-

guish the incompressible ground state of a gapped phase
from a compressible metallic phase in a homogeneous
system. The compressibility per particle is defined as � ¼
N�1

P
i@ni=@� where N ¼ P

ihnii ¼
P

ixi@xið�� ~�Þ. We

compute the compressibility with the 10th order series but
find essentially no distinction from the second order results
for �t & 0:9. The top panel of Fig. 1 plots the compressi-
bility as a function of the chemical potential in the center of
the trap, �, for two different values of T. At low chemical
potentials (�1:0 kHz & � & 0:8 kHz), the system forms a
compressible Fermi-lattice gas. At higher chemical poten-
tials (0:8 kHz & � & 4:2 kHz), the system forms a Mott
insulator at the trap center. Here and in what follows, we
define the Mott regime with a central density hnii ¼ 1�
0:01. A weak, barely distinguishable feature around � ¼
5:5 kHz in the top panel indicates that a finite fraction of
the system has become incompressible. Otherwise, we find
that � is a nearly smooth function of all experimentally
relevant parameters: the total compressibility incorporates
the edges of the system which overwhelms signatures of
the Mott transition.
We next study the system radius, R, because the com-

pressibility is not directly measurable in experiments. R is
defined as the root mean square of the distance averaged
with respect to the density [25]. The central panel of Fig. 1

plots R in units of the Thomas-Fermi radius, RTF ¼
að3N=4�Þ1=3, where a is the lattice spacing. The plateau
in the middle panel of Fig. 1 results from a combination of
edge effects and incompressibility at the trap center. As the
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FIG. 1 (color online). Total compressibility (top panel), system
radius (middle panel), and the core compressibility (bottom
panel) plotted as a function of the chemical potential in the
trap center for t ¼ 0:054 kHz and U ¼ 5 kHz. The arrows in the
bottom panel indicate the Mott regime at T ¼ 0:2 kHz.
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chemical potential increases, we add more particles to the
edge gas, and the size R scales as the size RTF, the relevant
length scale for the edges. A similar plateau can be seen in
the compressibility in units of the Thomas-Fermi com-
pressibility at a value �=�TF ¼ 1. Nonetheless, we have
again found only weak, edge dependent features that in-
dicate the formation of a Mott insulator.

We are thus looking for a robust technique that probes
the gapped phase without resorting to edge effects. We will
show that the core compressibility per particle satisfies this
requirement:

�C � N�1@D=@�; (5)

where the double occupancy is conventionally defined as

D ¼ @ð�Þ=@U ¼ P
ihn"in#ii. Our definition of D differs

from the definition in Ref. [6]. In Ref. [6], a quantity
related to its dimensionless derivative, @D=@N, was mea-
sured, which directly relates to the ratio of core and total
compressibility (without knowledge of �) via @D=@N ¼
ð@D=@�Þð@�=@NÞ ¼ �C=�.

In Fig. 2, we plot �C and � versus � for two different
temperatures in a uniform system and find that �C is
essentially identical to � when the system has doubly
occupied sites, but is zero otherwise. This is a key feature
with useful implications for trapped systems: �C, by taking
the derivative of the double occupancy, measures the com-
pressibility of the core region with density larger than 1
(see the insets of Fig. 3) and is therefore insensitive to the
edges.

A comparison between the top and bottom panels of
Fig. 2 shows that �C and � agree at low temperatures and
high chemical potentials. This can be understood by con-
sidering a single site in the atomic limit: ð�C=�Þt¼0 ¼ ð1þ
�Þ½2þ � þ w=���1. At zero temperature, we can see the

implicit cutoff in the chemical potential ð�C=�Þt¼0 !
	ð��U=2Þ. Measurements of @D=@N therefore exclude
low chemical potentials (and thus edge effects) in trapped
systems, yielding a measure of the core compressibility
ratio (CCR), �C=�, at low temperatures, T � U.
The LDA is an excellent approximation for the parame-

ters considered here. The circles in the insets of Fig. 3 plot
the density computed without the LDA. Comparison with
the LDA results (solid line) shows remarkable agreement
for �t & 1. We have also compared the compressibility
computed with and without the LDA and have found very
little distinction (less than 4%) in the regime of validity of
our high temperature series �t & 1. The LDA is thus a
good approximation, and the high temperature series ex-
pansion yields a highly accurate tool for quantitative com-
parison with ongoing experiments with strongly interacting
(t=U � 1) fermions in optical lattices.
We now make contact with recent experiments of

Ref. [6], reporting a measurement of the quantity �d=�N
where � stands for an approximate derivative taken by
linear fitting to experimental data. This experiment mea-
sures the double occupancy fraction d � 2D=N instead of
the double occupancy D. Estimating �d=�N � @d=@N ¼
ð2�C=�NÞ �D=N2, we find that the difference is small
near unity filling implying that Ref. [6] measures the CCR.
Note that �N must be carefully chosen to ensure the proper
phase [26]. Figure 4 compares 2�C=�N and �d=�N, show-
ing agreement near the Mott transition with only small
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FIG. 2 (color online). Compressibility (dotted line) and core
compressibility (solid line) versus chemical potential in a uni-
form system, � ¼ 0, with U ¼ 7 kHz and t ¼ 0:054 kHz. The
top (bottom) panel sets T ¼ 1 kHz (T ¼ 0:5 kHz). The three
incompressible regions correspond to a pinning of the density at
0, 1, and 2 for chemical potentials near � ¼ �U=2, U=2, and
3U=2, respectively. For � & U=2, �C vanishes because the
system shows very little double occupancy.
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FIG. 3 (color online). The core compressibility ratio versus on-
site interaction strength for � ¼ 4 kHz. The top panel fixes t ¼
0:054 kHz for several temperatures, T ¼ 0:07 kHz (dot-dashed
line), 0.2 (dashed line), 0.5 (solid line), and 1.0 (dotted line). The
bottom panel fixes T ¼ 0:2 kHz for t ¼ 0:01 kHz (dashed line)
and 0.1 (dotted line). The insets plot the density along a cross
section in the cubic lattice for the same parameters as the bottom
panel of Fig. 2 but in a trap and with � ¼ 6:5 kHz (left) and
� ¼ 3:5 kHz (right). The circles are computed in a full second
order expansion for the density while the solid line is computed
in the second order LDA. The Mott gap pins the density near
hnii ¼ 1 at the trap center (right panel). For �>U=2 (left
panel), a central compressible region arises with ni > 1 at the
trap center.
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differences of order D=N2. However, we assert that a
measurement of the quantity �D=�N � �C=� provides a
better and more direct connection to the core compressi-
bility than �d=�N.

Both the CCR and �d=�N plotted in Fig. 4 show a
distinct signature of the transition to the incompressible
Mott phase. At low U, the core of the system lies in the
compressible regime of the Fermi-Hubbard phase diagram,
ni > 1. The peak structure in Fig. 4 originates from the
choice of� and the peaks in Fig. 2. Upon increasingU, we
enter the Mott regime, ni ¼ 1. (Note that compressibility
alone cannot distinguish the Mott phase from a weakly
compressible metallic phase.) Here, the center of the
trapped system opens a gap and the core compressibility
drops exponentially to zero. The zeroing of the core com-
pressibility (and the CCR) is therefore an indicator for the
onset of a Mott insulating phase in the sample center.
Recall that the total compressibility � shows very little
structure as we enter the Mott phase of a trapped system,
and the signal thus originates from the change in core com-
pressibility (compare the top and bottom panels of Fig. 1).

The inset of Fig. 4 makes a more direct comparison with
Ref. [6]. Here, we match entropy in the dipole trap at a
temperature TD with the entropy in the lattice at fixed N to
obtain a lattice temperature T. The inset is plotted for the
coldest temperatures ascertained in experiment. For larger
temperatures, TD=TF ¼ 0:195, where TF is the Fermi tem-
perature in the dipole trap, the Mott phase is less robust.

We also find that the precipitous drop in core compressi-
bility remains robust over a wide parameter range. The top
panel of Fig. 3 plots �C=�N for several different tempera-
tures. We find that the CCR shows a clear drop upon

entering the Mott phase for temperatures well below U.
For temperatures comparable to the Mott gap, the center of
the trapped system becomes compressible, and the clear
signature of a Mott phase vanishes (dotted line). A tem-
perature fixed point appears for U � � such that hHi � 0.
Here, one finds a crossover from a high temperature Fermi-
gas to a Mott phase. The bottom panel of Fig. 3 varies the
hopping to demonstrate that there is only a small shift with
different hoppings.
We have shown that observations of double occupancy

of cold atoms in optical lattices reveal the core compressi-
bility in a trapped Fermi-Hubbard model. This core com-
pressibility clearly indicates the onset of incompressible
states and describes recent measurements that show evi-
dence for the Mott transition [6]. Ongoing work will gen-
eralize our proposed technique to bosonic systems. The
core compressibility implicitly excludes edge effects to
reveal compressibility near the trap center. Transitions to
incompressible phases (e.g., metal-insulator transitions)
nucleated at the sample center can be readily identified in
experiments and compared with compressibility computed
in uniform Hubbard models.
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FIG. 4 (color online). The core compressibility ratio (solid
line) and the experimentally observed quantity �d=�N (dashed
line), plotted as a function of the on-site interaction strength for
� ¼ 4 kHz, t ¼ 0:054 kHz and T ¼ 0:3 kHz. The central den-
sity is unity for U * 6 kHz. The two lines merge when there is
little double occupancy. The inset plots the same, but the values
are obtained by matching the entropy of N ¼ 80 000 atoms in
the dipole trap (at TD=TF ¼ 0:15) to those in the lattice with t ¼
0:054.
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