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Motivated by recent experiments on cold atomic gases in ultrahigh finesse optical cavities, we consider

the two-band Bose-Hubbard model coupled to quantum light. Photoexcitation promotes carriers between

the bands, and we study the interplay between Mott insulating behavior and superfluidity. The model

displays a Uð1Þ � Uð1Þ symmetry which supports the coexistence of Mott insulating and superfluid phases

and yields a rich phase diagram with multicritical points. This symmetry is shared by several other

problems of current experimental interest, including two-component Bose gases in optical lattices and the

bosonic BEC-BCS crossover for atom-molecule mixtures induced by a Feshbach resonance. We

corroborate our findings by numerical simulations.
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Introduction.—The spectacular advances in cold atomic
gases have led to landmark experiments in strongly corre-
lated systems.With the observation of the superfluid–Mott-
insulator transition in 87Rb [1] and the BEC-BCS crossover
in 40K [2], attention is now being directed towards multi-
component gases. Whether they be distinct atoms or inter-
nal states, such systems bring ‘‘isospin’’ degrees of
freedom. They offer the fascinating prospect to realize
novel phases and to study quantum magnetism, Mott phys-
ics, and superfluidity [3].

More recently, significant experimental progress has
been made in combining cavity quantum electrodynamics
(cavity QED) with ultracold gases. Strong atom-field cou-
pling has been achieved using ultrahigh finesse optical
cavities [4] and with optical fibers on atom chips [5].
These experiments open an exciting new chapter in coher-
ent matter-light interaction and have already led to pio-
neering studies of condensate dynamics [6]. The light field
serves not only as a probe of the many-body system but
may also support interesting cavity-mediated phenomena
and phases. This dual role has been exploited in studies of
polariton condensates in semiconductor microcavities [7].
It is reinforced by ground-breaking cavity QED experi-
ments using superconducting qubits in microwave resona-
tors [8]. This has led to solid state measurements of the
collective states of the Dicke model [9] and remarkable
observations of the Lamb shift [10].

In this work, we examine the impact of cavity radiation
on the Bose-Hubbard model. We focus on a two-band
model in which photons induce transitions between two
internal states or Bloch bands. This is a natural general-
ization of the much studied two-level systems coupled to
radiation and may serve as a useful paradigm in other
contexts. The new ingredients are that the bosonic carriers
may form a Mott insulator or indeed condense. The pri-
mary question is whether a novel Mott insulating state can
survive, which supports a condensate of photoexcitations
or mobile defects. In analogy with zero point motion in
helium [11], this may be viewed as a form of supersolid in

which fluctuations of the photon field induce defects.
While this question has its origin in polariton condensates
in fermionic band insulators [12], the present problem is
rather different. Since the integrity of the Mott state is tied
to the interactions, a priori it is unclear that it survives the
effects of itinerancy and photoexcitation. Nonetheless, the
outcome is affirmative, and the model displays both this
novel phase and a rich phase diagram. Related phases were
recently observed in simulations of other two-component
models [13,14].
The model.—Let us consider a two-band Bose-Hubbard

model coupled to the light field of an optical cavity within
the rotating wave approximation
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where � ¼ a; b are two bands of bosons with ½�i; �
y
j � ¼

�ij. These might be states of different orbital or spin

angular momentum. Here, �� effects the band splitting,
U� and V are interactions, J� are nearest-neighbor hopping
parameters, and ! is the frequency of the mode c . We
consider just a single mode, which couples uniformly to
the bands. The coupling g is the strength of the matter-light
interaction. In view of the box normalization of the photon,

we denote g � �g=
ffiffiffiffi
N

p
, where N is the number of lattice

sites. It is readily seen that N1 ¼
P

iðnbi þ nai Þ and N2 ¼
c yc þP

iðnbi � nai þ 1Þ=2 commute with H0. These are
the total number of atomic carriers and photoexcitations
(or polaritons), respectively. These conservation laws re-
flect the global Uð1Þ � Uð1Þ symmetry of H0, such that

a ! ei#a, b ! ei’b, and c ! e�ið#�’Þc , where # and ’
are arbitrary. This symmetry will have a direct manifesta-
tion in the phase diagram and suggests implications for
other multicomponent problems. We begin by assuming
that a are strongly interacting hard-core bosons and that b
are dilute so that we may neglect their interactions.
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Zero hopping limit.—To gain insight into (1), we exam-
ine the zero hopping limit. This will anchor the phase
diagram to an exactly solvable many-body limit. The pho-
ton couples all of the sites and in the thermodynamic limit

is described by a coherent state j�i � e�ð�2=2Þe�c y j0i, with
mean occupation hc yc i ¼ �2. We may replace the grand
canonical Hamiltonian H � H0 ��1N1 ��2N2 by an
effective single site problem h�jHj�i � P

iH i:

H � X
�

~��n� þ ~! ��2 þ �g ��ðbyaþ aybÞ; (2)

and we drop the offset��2=2. We define ~�a � �a ��1 þ
�2=2, ~�b � �b ��1 ��2=2, ~! � !��2, and the mean
photon occupation per site ��2 � �2=N. The effective
Hamiltonian (2) describes a single two-level system
coupled to an effective ‘‘radiation field’’ of b particles, or
the Jaynes-Cummings model; forN two-level systems, this
is known as the Dicke or Tavis-Cummings model and is
integrable [15,16]. These paradigmatic models are well
known in both atomic physics and quantum optics and
describe localized excitons coupled to light [12]. The
eigenstates of (2) are superpositions in the upper and lower
bands (that we denote as j0; ni and j1; n� 1i, respectively)
with total occupancy n. The lowest energy is E�

n ¼ ~! ��2 þ
n~�b � ~!0=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~!2
0=4þ �g2 ��2n

q
, where ~!0 � ~�b � ~�a.

Minimizing on �� gives a self-consistency equation for
the photon, and the resulting eigenstates yield the zero
hopping phase diagram in Fig. 1. In the thermodynamic
limit described here, only the lowest Mott state, with na þ
nb ¼ 1, survives; for �1 � �b ��2=2� �g2=4 ~!, it is fa-
vorable to macroscopically populate the upper band.
Within this stable Mott phase, the variation yields either
�� ¼ 0, corresponding to zero photon occupancy, or ��2 ¼
ð �g4 � �g4cÞ=4 ~!2 �g2, where �gc �

ffiffiffiffiffiffiffiffiffiffi
~! ~!0

p
; the former occurs

for �g � �gc and the latter for �g � �gc. In fact, this onset
corresponds to the superradiance transition in the Dicke
model [15,16]. Indeed, since naþnb¼1�2S in the low-
est lobe, one may construct the Dicke model directly from
(1) by using a spin S ¼ 1=2 Schwinger boson representa-
tion, where Sþ � bya, S� � ayb, and Sz � ðnb � naÞ=2:

H ¼ ~!0

X
i

Szi þ ~!c yc þ g
X
i

ðSyi c þ H:c:Þ: (3)

This describes N two-level systems (or spins) coupled to
photons and may be treated using collective spins J �PN

i Si. This yields a large effective spin, which may be
treated semiclassically as N ! 1. The onset of the pho-
ton is accompanied by a magnetization M � hJzi=N,
which also serves as an order parameter for this continu-
ous transition: M ¼ �1=2, for �g � �gc, and M ¼
�ð �gc= �gÞ2=2, for �g � �gc. This growth reflects the popula-
tion imbalance hnbi � hnai due to photoexcitations. The
agreement between the variational and Dicke model results
is a useful platform for departures.

Variational phase diagram.—Having confirmed a zero
hopping Mott phase, with na þ nb ¼ 1, let us consider

itinerancy and carrier superfluidity. Within this lowest
lobe, we may consider hard-core a and b bosons [17]. A
convenient approach is to augment the variational analysis
of Ref. [3] with a coherent state for the light field:

jV i ¼ j�i �Y
i

½cos�iðcos�ia
y
i þ sin�ib

y
i Þ

þ sin�iðcos�i þ sin�ib
y
i a

y
i Þ�j0i; (4)

where j�i is the coherent state introduced previously and �,
�, �, and � are to be determined. The first term in brackets
describes the Mott state, and the second superfluidity. For
� ¼ 0 this coincides with the variational approach for
localized excitons coupled to light [12] and reproduces
the previous results for J� ¼ 0. More generally, (4) takes
into account the effects of real hopping, involving site
vacancies and interspecies double occupation. It provides
a starting point to identify the boundaries between the
Mott-insulator and superfluid regions. We consider spa-
tially uniform phases, with energy density E �
hV jHjV i=N:

E ¼ ð~�þ � ~�� cos2�Þcos2�þ ð2~�þ þ VÞsin2�sin2�
� z

4
½Jacos2ð�� �Þ þ Jbsin

2ð�þ �Þ�sin22�
þ ~! ��2 þ �g �� cos2� sin2�; (5)

where z is the coordination number and ~�� � ð~�b � ~�aÞ=2.
Minimizing on �� yields �� ¼ � �gcos2� sin2�=2 ~!, and
one may eliminate this from E. Exploiting symmetries,
one may minimize E over ½0; 	=2�. The order parameters
hai ¼ 1

2 sin2� cosð�� �Þ, hbi ¼ 1
2 sin2� sinð�þ �Þ, and
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FIG. 1 (color online). Zero hopping phase diagram in the
large-Ua limit, with �b ¼ ��a ¼ ! ¼ �g ¼ 1, corresponding
to !<!0. The vertical line �g ¼ �gc is the superradiance tran-
sition in the Dicke model and separates a Mott insulator with
na þ nb ¼ 1 and hc yc i ¼ 0 (dark blue) from a superradiant
Mott insulator with hc yc i � 0 (light blue). Outside are the
vacuum and an unstable region corresponding to macroscopic
population of the b states. While the total density is fixed within
both Mott phases, the individual a and b populations vary in the
superradiant phase and may be viewed as isospin order. For !>
!0, the boundaries may cross and terminate the lobe.
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hc yc i=N ¼ ��2 yield the phase diagram in Fig. 2, where
Ja ¼ Jb ¼ J. For the chosen parameters, we have four
distinct phases: (i) a Mott state with hai ¼ hbi ¼ hc yc i ¼
0, (ii) a superradiant Mott state with hai ¼ hbi ¼ 0 and
hc yc i � 0, (iii) a single component superfluid with hai �
0 and hbi ¼ hc yc i ¼ 0, and (iv) a superradiant superfluid
with hai � 0, hbi � 0, and hc yc i � 0. Indeed, the
Hamiltonian displays a Uð1Þ � Uð1Þ symmetry, and these
may be broken independently. The phase diagram reflects
this pattern of symmetry breaking. In particular, the super-
radiant Mott state corresponds to an unbroken U(1) in the
matter sector (corresponding to a pinned density and phase
fluctuations) but a broken U(1) (or phase coherent conden-
sate) for photoexcitations. The expectation value of the
bilinear hbyai � 0 corresponds to the onset of coherence
in the Dicke model. This novel phase may be regarded as a
form of supersolid.

In the absence of competition from other phases, the
transition between the nonsuperradiant insulator (� ¼ � ¼
�� ¼ 0) and the a-type superfluid (� � 0, � ¼ � ¼ �� ¼ 0)
occurs when ~�a þ zJ ¼ 0. In Fig. 2, this is the line �2 ¼
2ð1� zJÞ. This crosses the superradiance boundary at a

tetracritical point ðzJc; �c
2Þ ¼ ðr=2; 2� rÞ, where r �

ð1þ ffiffiffi
5

p Þ=2 is the golden ratio. This follows from a
Landau expansion of (5); eliminating ��, all the quadratic
‘‘mass’’ terms vanish. More generally, the phase diagram
evolves with the parameters, and the a-type superfluid may
be replaced by the proximate phases [18].

Numerical simulations.—To corroborate our findings,
we perform exact diagonalization on a 1D system of
hard-core a and b bosons, with N ¼ 8 sites and periodic
boundary conditions. The Hilbert space is truncated to a
maximum number of photons Mc ¼ 2N ¼ 16. Figure 3

shows the total atom, photon, a-atom, and b-atom density.
The dashed lines indicate the approximate locations of the
Mott-insulator–superfluid (vertical line) and superradiance
(horizontal line) transitions, as determined from (a) and
(b). Although an accurate phase diagram for the thermody-
namic limit is beyond the scope of this work, the features
are in excellent agreement with Fig. 2. This parallels the
success of mean field theory in other low-dimensional
bosonic systems and is remarkable given the enhanced
role of fluctuations. This may be assisted by the long range
nature of the cavity photons. The superradiance transition
encompasses the superfluid and Mott phases and yields a
tetracritical point; see (a) and (b). In addition, the region of
a density overextends that of b density resulting in a pure
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FIG. 2 (color online). Variational phase diagram with Ja ¼
Jb ¼ J, �a ¼ �1, �b ¼ 1, ! ¼ V ¼ �g ¼ 1, and �1 ¼ 0. The
phases are (i) a Mott insulator (dark blue), (ii) a superradiant
Mott state supporting a condensate of photoexcitations (light
blue), (iii) a superradiant superfluid (light red), and (iv) an a-type
superfluid (dark red). The circles denote the transition to super-
fluidity as determined by �, and the squares denote the onset of
photons as determined by �. For these parameters, the transition
from the Mott insulator to the superradiant Mott state occurs for
�c

2 ¼ ð3� ffiffiffi
5

p Þ=2 	 0:382.
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FIG. 3 (color online). Exact diagonalization for a 1D system
with 8 sites,Mc ¼ 16 photons, and the parameters of Fig. 2. We

show (a) the total atom density and the Mott-insulator–superfluid
transition, (b) the density of photons (reduced by a factor of 2)
and the onset of superradiance, (c) the density of a atoms, and
(d) the density of b atoms. The dashed lines are a guide to the eye
and indicate the Mott-insulator–superfluid and superradiance
transitions, as determined by hand from (a) and (b). Their
intersection yields the location of the tetracritical point.
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a-type superfluid; see (c) and (d). Our simulations suggest
that this phase is stable with increasing system size [18].

Discussion.—A feature not addressed by the present
mean field theory, but captured in Fig. 3, is the dispersion
of the superradiance transition with J; in the Mott phase,
� ¼ 0, and J drops out of the variational energy (5). One
way to understand this is to recast the matter contribution

as jVMi ¼ Q
iðcos�i þ sin�ib

y
i aiÞj�i, where j�i �Q

ia
y
i j0i. This accommodates only local particle-hole

pairs. By analogy with the BCS approach to exciton insu-
lators [19], the Mott state may be refined and the J depen-
dence restored by incorporating momentum space pairing
[18]. This connection to the BEC-BCS crossover for bo-
sons [20] is reinforced by the Feshbach resonance problem
studied in the absence of a lattice [21–23]. Performing a
particle-hole transformation, the matter-light coupling
reads c yaibi. Aside from the global nature of the photon,
this converts a and b into a ‘‘molecule’’ c . At the outset
there are eight phases corresponding to condensation of
hai, hbi, and hc i. Of these, only five may survive; con-
densation of two variables provides an effective field (as
dictated by the coupling) which induces condensation of
the other. The band asymmetry �a < �b reduces this to
four, or less, depending on the parameters. In contrast to
the single species mean field theory, this case supports an
atomic superfluid, since condensation of one carrier no
longer induces a field. Moreover, condensation may leave
a U(1) symmetry intact, which allows the coexistence of
Mott insulating and phase coherent behavior.

In deriving (5) and the phase diagram, we are primarily
concerned with the matter-light coupling. As such, we
incorporate V as in Ref. [3]. This gives rise to the nontrivial
phases in Fig. 2. However, as noted by Söyler et al. [13],
analogous phases may be stabilized in the two-component
Bose-Hubbard model, without matter-light coupling,
through a more sophisticated treatment of V itself.
Indeed, on site repulsive interactions Vnanb favor a parti-
cle of one species and a hole of the other on the same site.
Treating this pairing in a BCS approach, one may replace

nai n
b
i by j�ij2 þ ð�ib

y
i ai þ H:c:Þ, where �i � hayi bii is to

be determined self-consistently. This field acts as a local
‘‘photon,’’ and a similar mean field phenomenology may
ensue. Such pairing also occurs in fermionic models [24].
Although our discussion has focused on a single global
photon, the symmetry analysis is more general. This is
supported by studies of the two-band Bose-Hubbard model
for equal fillings and commensurate densities [25]. We
shall provide details of the similarities and differences of
this local problem in Ref. [18]. The classical limit may also

be realized in optical superlattices, where giaib
y
i is tunnel-

ing between wells a and b.
Conclusions.—We have considered the impact of photo-

excitations on the Bose-Hubbard model. The phase dia-
gram supports a novel phase where photoexcitations
condense on the background of a Mott insulator. We have
performed numerical simulations and highlighted connec-

tions to other problems of current interest. Directions for
research include the impact of fluctuations and the nature
of collective excitations. It would also be interesting to
incorporate a finite photon wave vector. This may stabilize
inhomogeneous phases and probe incommensurate mag-
netism. Recent studies of Bose-Fermi mixtures also display
a similar phenomenology, in which superfluidity is re-
placed by fermionic metallicity [26].
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