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In this Letter, the first nonlinear force-free Vlasov-Maxwell equilibrium is presented. One component

of the equilibrium magnetic field has the same spatial structure as the Harris sheet, but whereas the Harris

sheet is kept in force balance by pressure gradients, in the force-free solution presented here force balance

is maintained by magnetic shear. Magnetic pressure, plasma pressure and plasma density are constant. The

method used to find the equilibrium is based on the analogy of the one-dimensional Vlasov-Maxwell

equilibrium problem to the motion of a pseudoparticle in a two-dimensional conservative potential. The

force-free solution can be generalized to a complete family of equilibria that describe the transition

between the purely pressure-balanced Harris sheet to the force-free Harris sheet.
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Force-free magnetic fields, i.e., magnetic fields satisfy-
ing

ðr � BÞ �B ¼ 0; (1)

r � B ¼ 0; (2)

are important for modelling low-� plasmas in laboratory,
space and astrophysical applications [1]. Equation (1) im-
plies thatr� B (basically the electric current density) has
to be aligned with the magnetic field, i.e., r� B ¼ �B.
The scalar function � is constant along magnetic field lines
due to Eq. (2), but can vary from field line to field line. If �
does not vary from field line to field line, but is globally
constant we get the case of linear force-free fields (some-
times also called constant-� fields). All other force-free
fields are called nonlinear force-free fields.

Using magnetohydrodynamics (MHD) many useful lin-
ear and nonlinear force-free magnetic fields can be found
analytically, especially if translational or rotational sym-
metry of the solutions is assumed (see e.g., [1,2]). This is
completely different if one considers collisionless Vlasov-
Maxwell (VM) equilibria (see e.g., the discussion in [2]).
So far, only one-dimensional linear force-free VM equi-
libria have been found[3–7], and, to the best of our knowl-
edge, no nonlinear force-free VM equilibria are known.

One-dimensional (1D) VM equilibria are frequently
used as a starting point for studies of waves and instabil-
ities in collisionless plasmas. One of the most commonly
used 1D VM equilibria is the Harris sheet[8], with BðzÞ ¼
B0 tanhðz=LÞex and jðzÞ ¼ B0=ð�0LÞcosh�2ðz=LÞey, so

the current density is perpendicular to the magnetic field.
The force balance is maintained by a pressure gradient.
Often, a constant magnetic field in the y direction (guide
field) is added, which, if sufficiently strong, is used to
mimic a force-free field. It is clear that through introducing
a guide field the current density is partially field-aligned,
but the strength of the guide field is completely decoupled
from the strength of the current density. In force-free fields

a stronger current density would lead to a stronger shear of
the magnetic field as the two are closely coupled.
Furthermore, a constant magnetic field will not add any
free energy to the system, whereas one expects an increase
in free energy if the magnetic shear in a force-free field is
increased. As a final point we mention that force-free
equilibria will have constant density and pressure, whereas
the Harris sheet plus guide field has the same pressure and
density gradients as the Harris sheet itself. This may be an
important difference in studies of, for example, magnetic
reconnection (see e.g., [9–13]). Some investigations of the
stability and dynamics of the known linear force-free 1D
VM equilibria have been undertaken [3,14,15], but it is to
be expected that nonlinear force-free equilibria will have
new and interesting properties.
Generally VM equilibria can only be found easily for

cases with spatial symmetries, and to obtain analytical
force-free solutions one has to investigate situations with
invariance along two coordinate directions. In this Letter
we consider the case of translationally invariant VM equi-
libria depending only on one spatial coordinate, here taken
to be z.
We assume that the magnetic field has components Bx

andBy. The magnetic field components are written in terms

of a vector potential A ¼ ðAx; Ay; 0Þ where Bx ¼
�dAy=dz and By ¼ dAx=dz.

We assume a plasma consisting of two particle species
of equal, but opposite charge (electrons and protons).
Because of the symmetries of the system the three obvious
constants of motion for each particle species are the
Hamiltonian or particle energy for each species s, Hs ¼
1
2msðv2

x þ v2
y þ v2

zÞ þ qs�, the canonical momentum in

the x direction, pxs ¼ msvx þ qsAx, and the canonical
momentum in the y direction, pys ¼ msvy þ qsAy. Here

� is the electric potential and ms and qs are the mass and
charge of each particle species. All positive functions fs
satisfying the appropriate conditions for existence of the
velocity moments and depending only on the constants of
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motion, fs ¼ fsðHs; pxs; pysÞ are solutions of the steady-

state Vlasov equation.
One can show [16,17] that for a quasineutral plasma,

Ampere’s law can be written as

d2Ax

dz2
¼ ��0

@Pzz

@Ax

; (3)

d2Ay

dz2
¼ ��0

@Pzz

@Ay

; (4)

where PzzðAx; AyÞ is the zz component of the plasma

pressure tensor, defined by

Pzz ¼
X

s

Z 1

�1
msv

2
zfsd

3v: (5)

Equations (3) and (4) can be immediately integrated once
to give the force balance condition across the sheet as

B2

2�0

þ Pzz ¼ PT ¼ const: (6)

Because of Eq. (1) a force-free equilibrium satisfies the
conditions B2 ¼ const and Pzz ¼ const separately.

The 1D VM equilibrium equations (3) and (4) are
equivalent to the equations of motion of a (pseudo)particle
in a conservative 2D pseudopotential PzzðAx; AyÞ [5,16].

The position of the pseudoparticle is given by Ax, Ay with

the pseudotime given by z. The energy (Hamiltonian) of
this pseudoparticle is given by the total pressure defined
in Eq. (6) (modulo a factor �0) E ¼ ½ðdAx=dzÞ2 þ
ðdAy=dzÞ2�=2þ�0PzzðAx; AyÞ. One can show that a

force-free VM solution corresponds to a pseudoparticle
trajectory that is identical to a contour of the pseudo-
potential [17]. This is easily possible for attractive central
potentials which have circular contours and also allow
circular pseudoparticle orbits. These circular orbits corre-
spond to the known linear force-free solutions [3–7],
which, as far as we are aware, are the only known force-
free VM solutions. For finding nonlinear force-free solu-
tions we obviously need to find a pseudopotential
PzzðAx; AyÞ which is not a central potential, but still allows

a solution to Eqs. (3) and (4) that is identical with an
equipotential line.

Channell [5] showed how, by making a number of
sensible assumptions, a transform method can be used to
determine a class of distribution functions for a known
PzzðAx; AyÞ. Mynick et al. [16] generalized this method

and used it to determine the distribution functions numeri-
cally. In this Letter we will first determine a function
PzzðAx; AyÞ for the force-free Harris sheet and then use

Channell’s method to find the corresponding distribution
functions.

The magnetic field of the force-free Harris sheet solution
is given by (see also Fig. 1)

Bx ¼ B0 tanhðz=LÞ; (7)

By ¼ B0cosh
�1ðz=LÞ; (8)

with B0 the constant amplitude of the field and L the sheet
half width. Obviously we have B2

x þ B2
y ¼ B2

0. One can

easily see that jx ¼ B0=ð�0LÞ tanhðz=LÞ= coshðz=LÞ, jy ¼
B0=ð�0LÞcosh�2ðz=LÞ, giving �ðzÞ ¼ ½L coshðz=LÞ��1.
The x component of this magnetic field is identical to the

Harris sheet Bx, but in this case the force balance is main-
tained by the magnetic shear component By instead of the

plasma pressure. The vector potential for the force-free
Harris sheet field is found to be given by

Ax;ffh ¼ 2B0L arctanð expðz=LÞÞ; (9)

Ay;ffh ¼ �B0L ln

�
cosh

�
z

L

��
; (10)

in a convenient gauge.
In order to make analytical progress we assume that Pzz

has the form PzzðAx; AyÞ ¼ P1ðAxÞ þ P2ðAyÞ. The physical
meaning of this assumption is that for each particle species
there are two different particle populations that carry the
components of the current density in the x and the y
directions. Equations (3) and (4) give the conditions

�
dAx

dz

�
2 þ 2�0P1ðAxÞ ¼ 2�0P01; (11)

�
dAy

dz

�
2 þ 2�0P2ðAyÞ ¼ 2�0P02; (12)

where P01 and P02 are constants. Equations (11) and (12)
will be used to find the appropriate PzzðAx; AyÞ.
We substitute Ax;ffh and Ay;ffh into the first terms of

Eqs. (11) and (12) and then use that expðz=LÞ ¼
tanðAx=2B0LÞ and coshðz=LÞ ¼ expð�Ay=B0LÞ to obtain

Pzz ¼ B2
0

2�0

�
1

2
cos

�
2Ax

B0L

�
þ exp

�
2Ay

B0L

��
þ P03: (13)

A surface plot of PzzðAx; AyÞ is shown in Fig. 2. Above the

surface plot the trajectory representing the force-free

FIG. 1. The magnetic field, current density and pressure pro-
files as functions of z=L for the Harris sheet (left panel), the
force-free Harris sheet (right panel) and an intermediate case
(middle panel).
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Harris sheet solution in the Ax-Ay plane is shown. By

construction it is identical to a contour of PzzðAx; AyÞ.
We use Channell’s [5] Fourier transform method to

solve the integral equation (5) for the distribution functions
fs. The method is based on the assumptions that (a) the
distribution functions have the form fsðHs; Pxs; pysÞ ¼
f0s expð��sHsÞgsðpxs; pysÞ and that (b) the quasineutral

electric potential �qn vanishes. The validity of the second

assumption can be easily verified a posteriori and only
requires the correct choice of parameters. Applying the
method we find that the required distribution functions are
of the form

fs¼ n0s
v3
th;s

expð��sHsÞ½expð�suyspysÞ

þascosð�suxspxsÞþbs�; (14)

where vth;s ¼ ðms�sÞ�1=2 is the thermal velocity of parti-

cle species s and uxs, uys, as and bs are constants with 0<

as < bs. We have here reverted to the usual microscopic
notation for the distribution functions. We will make the
connection to the notation used previously by calculating
Pzz directly from the distribution function and then com-
paring the result with the expression (13). This is useful to
relate the macroscopic quantities B0 and L to the micro-
scopic parameters of the distribution function. The first
part of this distribution function is identical with the Harris
sheet [8] distribution function, whereas the second part
corresponds to a different particle population which carries
the current in the x direction and is responsible for the
shear field ByðzÞ. When calculating Pzz from the distribu-

tion function one finds that it has the general structure

Pzz ¼
P

s�
�1
s expð�qs�s�ÞNsðAx; AyÞ, where

NsðAx; AyÞ ¼
ffiffiffiffiffiffiffiffiffi
8�3

p
n0s expð�smsu

2
ys=2Þ½expð�suysqsAyÞ

þ as expð��smsðu2xs þ u2ysÞ=2Þ
� cosð�suxsqsAxÞ þ bs expð��smsu

2
ys=2Þ�:

The quasineutrality condition leads to �qn ¼ ½eð�e þ
�iÞ��1 lnðNi=NeÞ. The condition of vanishing quasineutral
electric potential implies that NiðAx; AyÞ ¼ NeðAx; AyÞ,
which is true if

n0e expð�emeu
2
ye=2Þ¼n0iexpð�imiu

2
yi=2Þ

¼n0=
ffiffiffiffiffiffiffiffiffi
8�3

p
;

ae exp½��emeðu2xeþu2yeÞ=2�¼aiexp½��imiðu2xiþu2yiÞ=2�
¼a;

beexpð��emeu
2
ye=2Þ¼biexpð��imiu

2
yi=2Þ¼b;

��euxe¼�iuxi;

��euye¼�iuyi:

Supposing that �e and �i are given we have ten other
parameters needing to satisfy only five equations, which
is always possible. This provides the necessary a posteriori
justification for using Channell’s method. Using the nota-
tion often used for the Harris sheet (e.g., [18]) Pzz becomes

Pzz ¼
�
1

�e

þ 1

�i

�
n0½expð�e�euyeAyÞ þ a cosðe�euxeAxÞ

þ b�:
(15)

Comparison with Eq. (13) shows that for the force-free
Harris sheet the connection between the microscopic no-
tation and the original notation is given by

B2
0

2�0

¼
�
1

�e

þ 1

�i

�
n0; (16)

L ¼
�

2�i

�0e
2n0u

2
ye�eð�e þ �iÞ

�
1=2

; (17)

a ¼ 1

2
; (18)

b ¼ 2�0P03=B
2
0: (19)

Equation (17) is especially important as it provides a
relation between the length scale L and the parameters of
the distribution function. This, for example, directly links
�ðzÞ ¼ ½L coshðz=LÞ��1 derived from the general form of
the magnetic field and current density to the microscopic
parameters of the distribution function.
It is straightforward to see that for different parameter

values the distribution function (14) gives the complete

FIG. 2. A surface plot of the pressure function PzzðAx; AyÞ for
the force-free Harris sheet. The force-free Harris sheet solution
is shown as a pseudoparticle trajectory at the top of the plot. It is
identical with a contour of Pzz.
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family of equilibria describing the transition between the
Harris sheet and the force-free Harris sheet. The intermedi-
ate cases have, written as functions of z,

Bx ¼ Bx0 tanhðz=LÞ; (20)

By ¼ By0cosh
�1ðz=LÞ; (21)

Pzz ¼ P0cosh
�2ðz=LÞ þ P00; (22)

where P0 þ B2
y0=2�0 ¼ B2

x0=2�0. Taking the limit By0 !
0 gives the Harris sheet [8] and taking the limit P0 ! 0
gives the force-free Harris sheet.

An appropriate PzzðAx; AyÞ can be determined in the

same way as for the force-free Harris sheet and takes the
form

Pzz ¼ B2
x0

2�0

exp

�
2Ay

Bx0L

�
þ 1

2

B2
y0

2�0

cos

�
2Ax

By0L

�
þ P03: (23)

In this case a comparison between Eqs. (23) and (15) shows
that Eqs. (16), (17), and (19) do not change apart from B0

becoming Bx0, but that we now also have

By0 ¼
�
2�0ð�e þ �iÞn0u2ye

�e�iu
2
xe

��1=2
; (24)

a ¼ 1

2

B2
y0

B2
x0

: (25)

As shown by Harrison and Neukirch[17] one can deduce
from one PzzðAx; AyÞ allowing a force-free VM solution an

infinite number of other functions �PzzðAx; AyÞ allowing the

same force-free solution by using positive definite func-
tions of the known PzzðAx; AyÞ. We mention, in particular,

the possibility of using an exponential function of the Pzz

presented here, as it would give rise to a product form for
Pzz instead of a sum. The distribution functions would also
consist of products of functions of pxs and pys instead of a

sum. It is, however, unclear whether the method used in
this Letter would still allow for an analytical calculation of
these distribution functions.

This new family of VM equilibria will generate new
possibilities for studies of linear and nonlinear instabilities
of force-free current sheets. The stability of the VM equi-
libria presented here has yet to be investigated. We point
out that the pxs dependent part of the distribution function
may have multiple peaks in the vx direction and we suspect
that this will give rise to instabilities. We also remark that
although the BxðzÞ and jyðzÞ profiles are identical to the

Harris sheet, jxðzÞ is antisymmetric with respect to z ¼ 0.
This is closely linked to the fact that in the Harris sheet
solution the spatial structure of the current density is

determined by the density structure with the average ve-
locity of each particle species being constant, whereas in
the force-free solution presented here the particle density is
constant and the spatial structure of the current density is
determined by the spatial structure of the average velocity.
Further investigations will be needed to clarify exactly
what the implications are for the stability of the new
solution, but on the basis of the physical differences just
mentioned one would expect the stability properties of the
force-free solution to differ considerably from those of the
Harris sheet. Apart from studying the stability properties of
the solution class presented here, it will be also be very
interesting to investigate whether the general method em-
ployed here can be used to find other nonlinear force-free
solutions.
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