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Allée Camille Soula, F-31400 Toulouse, France

2CNRS, IMFT, F-31400 Toulouse, France
(Received 2 October 2008; published 3 April 2009)

We describe a dynamical model that predicts the zigzag motion of disks and oblate spheroids moving

freely in a viscous liquid over a continuous range of aspect ratios and Reynolds numbers. This model

combines the generalized Kirchhoff equations to describe the linear and angular momentum balances for

the fluid-body system with a dynamical model for the wake-induced force and torque that incorporates the

main characteristics of the wake dynamics deduced from previous experimental observations. The

resulting model is shown to be able to reproduce quantitatively the oscillatory paths measured

experimentally.
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Bodies of different shapes, materials, or densities fre-
quently select a periodic path when rising or falling freely
in a fluid at rest under the action of buoyancy: a winged-
seed undulating in air, a paper card tumbling during its fall,
a bubble spiraling in water are examples of such periodic
motions. This generic behavior results from the coupling
between the motion of the body and that of the surrounding
fluid: a body displacement induces a movement in the fluid,
which in turn modifies the motion of the body through the
hydrodynamic loads acting on it. However, there is at
present no general theoretical framework that completely
describes the evolution of these loads along a body’s
periodic path. More precisely, several empirical models
specifically considered the case of a two-dimensional plate
[1–4] or that of a bubble [5]. Nevertheless, such models are
unable to describe the variety of periodic motions observed
when the control parameters of the problem are varied
continuously. The goal of the present Letter is to elaborate
such a model for the case of disks of various aspect ratios
and, more generally, of ‘‘oblate’’ axisymmetric bodies, by
combining the findings and scaling laws provided by a
recent series of experiments. These experiments [6–8]
revealed that disks (of diameter d and thickness h) of
variable aspect ratio 2< � ¼ d

h < 10 rising with a

Reynolds number in the range 100< Re ¼ Vd
� < 330 (V

being the body vertical velocity and � the liquid kinematic
viscosity) exhibit a wide range of zigzagging styles on
almost two-dimensional paths: the oscillations of the ori-
entation and those of the velocity are nearly in phase for
thick bodies (� � 3) (the body axis is almost aligned with
the tangent to the path, as also happens in the case of a
bubble), whereas they are more than �=2 out-of-phase for
thin bodies (� � 8) (the body seems to slide along the path
with its midplane almost aligned with the tangent to the
path, as is also observed for a two-dimensional plate or a
dead leaf). This change occurs gradually when � increases
and was also observed for oblate spheroids [6].

All modern models for this class of buoyancy-driven
motions are based on the generalized Kirchhoff equa-
tions that describe the linear and angular momentum bal-
ances for the fluid-body system [9–11]. In these equations,
the body inertia supplemented by a certain added inertia
of the surrounding fluid is balanced by the buoy-
ancy loads and the vortical loads resulting from the exis-
tence of a wake past the body, owing to the vorticity
generated at the body surface. These loads are the key
issue of the modeling problem. Previous investigations
[1–4] assumed that the vortical loads are only a function
of the body degrees of freedom. Inspired from the classical
relations established for a lifting body held fixed in a
steady uniform stream (in particular the well-known
Kutta-Joukowski condition), these models consider that
the vortical loads are linear or quadratic functions of the
translational and/or angular velocity components of the
body. Obviously, the time-dependent motions they pre-
dict result directly from the mathematical properties of
the underlying equations. In particular, the basic as-
sumption made in these models forces the phase lag
between the oscillations of the body velocity and those
of its inclination to be locked, thus preventing these
models from a generalization that would allow them to
reproduce the variety of zigzag styles observed experi-
mentally in [7]. Since this phase difference is directly
related to the wake dynamics through the evolution of
the vortical loads [12], a different angle of attack is to
introduce a dynamical model for the vortical loads that
takes into account the main characteristics of the wake
dynamics. This is the approach we follow in this Letter.
This approach is grounded on earlier works aimed at
describing the wake dynamics about fixed bodies and the
associated transitions through low-order models (see for
instance [13]), an approach also applied successfully
within the framework of fluid-structure interactions (see
for instance [14]).
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Let x be the direction along the body symmetry axis and
(y, z) two orthogonal directions in the perpendicular plane
with the z axis horizontal and the body moving in the
vertical plane (x, y). The body velocity components in
this plane are (u, v) and r ¼ d�

dt is the rotation rate of the

body about the z axis, � being the angle between the
vertical and the x axis. The generalized Kirchhoff equa-
tions written componentwise are

SðMþ AÞ du
dt

� SðMþ BÞvr ¼ Fx! þ cos�; (1)

SðMþ BÞ dv
dt

þ SðMþ AÞur ¼ Fy! � sin�; (2)

S2ðMJþ QÞ dr
dt

� ðA� BÞuv ¼ �z
!: (3)

with M ¼ �s

��f
(in what follows, the ratio of the body-to-

fluid densities �s=�f, is set to a fixed value very close to 1,

to mimic experimental conditions in [7]). These equations

have been normalized using the scales l0 ¼ d, u0 ¼
ðj�s��fj

�f
ghÞ1=2, f0 ¼ �fu

2
0�d

2, for the length, velocity

and force, respectively, g denoting gravity. These scales
generate the inertial time scale t0 ¼ l0=u0, set by the mean
rise motion. Using instead the time scale t! ¼ !�1, where
! is the angular frequency of the body oscillatory motion
introduces the Strouhal number S ¼ t0=t!. Experiments

[7] indicated that S evolves according to S � 2��
0:085�1=2ð1þ 0:047ðRe� � Re�cÞÞ, with Re�c ¼ 72. The
modified Reynolds number Re� is built on the maximum
of the reverse velocity in the recirculating region of the
wake and characterizes the strength of wake effects. Based
on values determined for stationary wakes, it was found in
[7] that Re� is linked to Re through the simple empirical
relation Re� ¼ 0:62Re�=ð1þ �Þ. The left-hand side of
(1)–(3) contains the inertia terms associated with the body
(J is the dimensionless moment of inertia of the body about
the z axis), and those due to the fluid set in motion
instantaneously by a translational or a rotational accelera-
tion of the body (characterized by the added-mass coeffi-
cients A, B, and Q) [12]. On the right-hand side, the
sinusoidal functions of � are the components of the buoy-
ancy force and Fx! and Fy! stand for the components of the
vortical force F! along the x and y directions, respectively,
while �z

! is the component of the vortical torque �! along
the z direction.

The experimental results revealed that the body dynam-
ics (kinematics) can be split into the predominant contri-
bution of steady axial drag (resp. constant axial velocity)
and a smaller-amplitude contribution provided by the os-
cillatory transverse forces and torques (transverse velocity
and angular rotation). Equation (1) mainly corresponds to
an equilibrium between the buoyancy force and a constant
drag force, Fx! ’ � cos� ’ �1, which results in the con-
stant axial velocity, u ’ 1:35–3:5� 10�3ðRe� � Re�cÞ [12].

The oscillations of the transverse velocity v and of the
inclination angle � are driven by the vortical loads Fy! and
�z
!, whose oscillations are a direct consequence of the

vortex shedding process. We therefore introduce an equa-
tion to model the evolution of Fy!, based on two physical
ingredients characterizing the wake dynamics. First, the
saturated amplitude of the oscillations of the transverse

force is proportional to the quantity ðRe� � Re�cÞ1=2, which
is representative of the intensity of the vortices in the body
near-wake [12]. Second, the time required to approach the
limit cycle of regular oscillations once the body is released
from rest scales with the inertial time scale t0 set by the
mean rise motion. Actually, this time scale was found to
govern the leading-order evolution of the vortex structure
in the body wake [8] and can therefore be expected to
control the time required by the wake to set a periodic
shedding of vortices in phase with the body motion. A
simple model accounting for both these properties can be
written in the form of an envelope equation for the ampli-
tude F of the transverse vortical force Fy!, namely,

dF

d�
¼ ðRe� � Re�cÞF� F3; (4)

with Fy!ðtÞ ¼ �Fð�Þ sint ¼ �<ðFð�Þeiðt��=2ÞÞ. In these ex-
pressions, the time � (which is normalized by the scale t0
instead of t!) is given by

� ¼ �t

SðRe� � Re�cÞ : (5)

The prefactors � and � are adjustable. Here, we take � ¼
1=15 and � ¼ 2=5 to match the measurements of Fy!
reported in [12]. Though (4) is reminiscent of a Landau
equation, it is not meant here to describe the transition
between the rectilinear and oscillatory paths of the body,
since the nature of this transition is not clear for the time
being: though the onset of path oscillations is very close to
Re�c for thick bodies (� � 6), thin bodies exhibit path
oscillations only for much larger Re� [7]. In the case of
axisymmetric bodies held fixed in a steady uniform flow, it
has also recently been shown that the nature of the succes-
sive bifurcations in the wake depends on the body shape
[15]. The precise modeling of the transition thus requires a
specific effort, which is beyond the scope of the present
Letter. Instead, the aim of Eq. (4) is to model the growth
and saturation of the transverse force for the range of
parameters corresponding to the zigzag regime. The most
interesting point is that the length of the transient required
for the body path to reach regular oscillations is inversely
proportional to the Strouhal number for all bodies and
therefore depends mostly on the aspect ratio � and only
weakly on Re� (see below).
So far, the model incorporates information about the

state of the wake, in particular its strength and rate of
evolution, that depends on the mean rise motion of the
body through the modified Reynolds number Re� and the
inertial time scale �. The next step is to bring into play the
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oscillatory degrees of freedom of the body.We note that the
model should somehow encapsulate the case of a body held
fixed in a steady uniform flow. However, the phase differ-
ence and the amplitude ratio between the vortical torque
and the vortical transverse force depend strongly on the
aspect ratio � when the body is free to move, whereas they
do not when it is fixed [12]. We therefore conjecture that
the effect of the body degrees of freedom on the vortical
loads must be expressed as a deviation from the behavior of
fixed bodies. More precisely, we assume that the vortical
torque is linked both to the vortical transverse force and to
the body degrees of freedom as follows

�z
! ¼ ldF

y
!ðtþ t�Þ þ ��mð�; u; v; r; . . .Þ: (6)

The first term corresponds to the torque already existing
when the body is fixed. Numerical simulations for fixed
bodies in a uniform flow (see [7] for technical details)
showed that the phase difference t� is small and that the
lever arm ld is in the range 0.15–0.2, increasing slightly
with the aspect ratio. Here we choose ld ¼ 0:19 (i.e., the
dimensional lever arm is 0:19d) and t� ¼ 0 for simplicity
and without significant effect on the results. The torque
��m is introduced to balance the differences in amplitude
and phase observed when the body is free to move; these
differences are larger when the body becomes thinner. �m

is expected to depend on the body kinematics, but since the
vortical torque in (3) is known to be mainly balanced by the
added-mass torque ðA� BÞuv [12], we guess that �m

mainly depends on the rotational motion of the body.
Figure 1 presents the amplitude and phase with respect to
� of �m. It turns out that the amplitude, say �

amp
m , can be

fitted as �amp
m ¼ 5:3� 10�3ðRe� � Re�cÞ1=2 and that the

phase with respect to �, say �, is nearly independent of
� for � � 3 and increases only slightly with Re�, which
leads to � ¼ �

180 ð43:5þ 0:13ðRe� � Re�cÞÞ. This suggests
that �m may be expressed as a combination of two terms:
one in phase with the body inclination and one proportional
to the body rotation r. We obtain

�m ¼ 0:09� ð	1 sin�� 	2rÞ; (7)

with 	1 ¼ cos� and 	2 ¼ sin�, which are independent of
�. The first term can be thought of as a contribution

resulting from the shift of the axial vortical force with
respect to the body symmetry axis when the body inclines.
Note that the prefactor � in (6) indicates that the relevant
length scale for the lever arm of this contribution is the
body thickness h rather than d. In summary, our model for
the vortical torque involves three contributions: two of
them are the torques associated with the vortical transverse
and axial forces acting off-centered on the body, while the
third is due to the body rotation. The most remarkable point
is that this model based on simple expressions allows us to
describe accurately the vortical loads acting on the body
for the whole range of parameters � and Re� covered in our
experiments.
Nevertheless, the above expression for �m implies that

the vortical torque reacts immediately to a change in the
body kinematics. It may instead seem more reasonable to
assume that the instantaneous vortical torque depends on
the past history of the body rotation since the latter influ-
ences the distribution of vortices in the wake. We therefore
consider an alternative model for �m involving an integro-
differential operator of the body motion, namely,

�m ¼ �	0

Z t

0
e�
ðt��Þ dr

d�
d�; (8)

where 	0 ¼ 0:12 and 
 ¼ tan�1�, which according to
Fig. 1 implies that the time scale 
�1 is 3 to 6 times shorter
than the period of the oscillations, depending on Re�.
Obviously �m ¼ 0 for a fixed body. Also (8) tends towards
(7) at large time for periodic oscillations of r, since in this

case 	0 ¼ 0:09
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 
2

p
’ 0:12. Expression (8) is consis-

tent with the fact that the sign of the dr
dt term in (3) is

essentially opposite to that of �z
!, so that it does not appear

as the response of the body to �z
! [12].

The system (2)–(6) supplemented by (7) or (8) can now
be solved in terms of variables v, �, r and F to compute the
evolution of the body motion. For this purpose we employ
a 4th-order Runge-Kutta algorithm. The initial conditions
at t ¼ 0 are v ¼ 0, � ¼ 0, r ¼ 0 and F ¼ F0, correspond-
ing to a body moving with a constant vertical velocity u on
which a perturbation is introduced in the form of a trans-
verse force F0. Other sets of initial conditions could be
used as well with no significant difference on the fully
developed path. We also noticed that results obtained using
(7) superimpose on those found using (8) within graphical
accuracy. Figure 2 presents the computed inclination angle
� (solid lines) and the experimental measurements (dashed
lines) for various values of � and Re�. In each case, a
particular value of the initial perturbation F0 is chosen to
match the experimental growth of the amplitude of �.
Obviously, the magnitude of the perturbation also differs
from one experimental case to another. Since the phase
origin is also unknown in the experimental signal (when is
the perturbation applied?), the phases are matched to co-
incide during the limit cycle. The curves show that the time
required for each body to reach the constant-amplitude
regime is well reproduced by the model. A similar agree-
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FIG. 1. Amplitude �amp
m (left) and phase� (right) of the torque

�m as a function of � and Re� (experimental data from [12]). The
dashed lines correspond to the fits.
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ment is obtained for the transverse velocity (not shown).
Noticeably, Fig. 2 indicates that the behavior of a thick
body with � ¼ 2 can also be satisfactorily predicted by the
model, despite the poor agreement on the phase� between
the model and the experiments (Fig. 1). The diversity of
body kinematics recovered by the model is illustrated in
Fig. 3: the computed evolutions of � (dashed lines) and v
(solid lines) for a thin (� ¼ 10) and a thick (� ¼ 3) body
exhibit contrasting relative amplitudes and phases, corre-
sponding to the 2D plate-type and the bubble-type behav-
ior, respectively.

The strength of the model presented in this Letter is
twofold. First, it makes use of the generalized Kirchhoff
equations supplemented by a nonlinear model of the vor-
tical loads that incorporates several ingredients directly
deduced from experiments. In particular this model is
capable of reproducing accurately both the transient and
the saturated state of the body motion. Second, and perhaps
more importantly, it identifies two contributions in the
vortical loads. The first of these, which already exists for
fixed bodies, results from the shedding of vortices in the
wake. The second arises from the feedback of the body
degrees of freedom on the wake dynamics. Since these two
contributions scale differently with �, each of them re-
quired a specific modeling. The final model we obtained
allows the oscillatory behavior of freely moving axisym-
metric bodies such as disks and oblate spheroids to be
reproduced quantitatively over a wide range of aspect
ratios. In contrast, this model is valid over a limited range
of Reynolds number since it only incorporates the physics
of the first oscillating regime. Moreover, since the only
nonlinearity in the model is that introduced in (4), highly

nonlinear body paths cannot be reproduced with this for-
mulation. In particular the tumbling motion of [3] requires
extra nonlinearities to be taken into account. The present
model can be straightforwardly extended to certain classes
of three-dimensional paths. In the absence of rotation of
the body about its symmetry axis, a similar modeling for
the additional vortical loads Fz! and �y

! can be introduced
with appropriate coefficients. If a smaller value of� is used
for Fz!, the model generates quasi-two-dimensional paths,
like those observed in [7]. If a smaller value of � is
employed for Fz!, zigzag paths evolving into helical paths,
like those observed in the case of an oblate bubble [11], are
obtained.
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FIG. 3 (color online). Predicted evolutions of � (dashed line)
and v (solid line) for the thin body with � ¼ 10 (left) and the
thick body with � ¼ 3 (right) of Fig. 2.
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FIG. 2 (color online). Evolution of the computed (solid line)
and experimental (dashed line) inclination angle � for: (a) a thin
body with � ¼ 10, Re� ¼ 155, F0 ¼ 0:026; (b) an intermediate
body with � ¼ 6, Re� ¼ 112, F0 ¼ 0:04; (c) a thick body with
� ¼ 3, Re� ¼ 100, F0 ¼ �0:02; (d) a thick body with � ¼ 2,
Re� ¼ 103:5, F0 ¼ 0:036.
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