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New Flow Regimes Generated by Mode Coupling in Buoyant-Thermocapillary Convection
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We report on a new nonlinear dynamics occurring in a confined cylindrical column filled with fluid
(liquid bridge) and heated from above. We demonstrate and analyze the novel oscillatory flow state
created by the interaction of two hydrothermal waves of different origins: one propagates vertically from
the cold towards the hot side (m = 0) and another is traveling in the azimuthal direction (m = 1). Their
interaction leads to an exotic flow structure: during a part of the oscillation period the resulting wave
propagates in a given azimuthal direction, whereas during the rest of the period it moves in the opposite
direction. A new bimodal flow regime is found to exist over a parameter range where these modes have
comparable influence. The phase diagrams, obtained by three-dimensional nonlinear simulations, are
reported. They shed light on the instability mechanism and criteria of the existence of novel states.
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The investigation of the Rayleigh-Bénard and Rayleigh-
Marangoni convection has played a crucial role in the
development of the nonlinear stability theory for planar
spatially extended systems [I]. Recently, significant
progress has been achieved in understanding the nonlinear
regimes of buoyant-thermocapillary convection in cylin-
drical columns [2,3]. The latter problem can be considered
as a paradigmatic example of nonlinear dynamics in es-
sentially nonparallel flows. The mechanisms of instability
have a universal character. Therefore, it is of a general
interest, far beyond its direct applications in engineering.
Because of the periodicity of the problem in the azimuthal
direction, the spectrum of azimuthal wave numbers is
discrete. The hydrothermal waves, which are developed
due to the oscillatory instability of a steady axisymmetric
flow, are characterized by integer values of the azimuthal
wave number m. Typically, above the critical point, a 3D
oscillatory flow starts as a finite-amplitude standing or
traveling (TW) wave. When the thermal stresses increase,
the nonlinear dynamics is determined mostly by the inter-
action of modes with m = 1 and m = 2, e.g., [2,3].

Still, the role of the simplest, axisymmetric oscillatory
mode m = 0, is somehow elusive, and there is no agree-
ment on that subject up to now. Xu and Davis [4] predicted
the selection of m = 0 mode for infinitely long liquid
columns with Pr>50. Shevtsova and Legros [5] found
the instability with wave number m = 0 in a liquid with
Pr = 105 (in the framework of an axisymmetric problem
with the interface deformed by gravity). That theoretical
prediction has been confirmed by laboratory experiments
(for the same liquid) by Shevtsova et al. [6] for the aspect
ratio I' = d/R = 4/3 in a narrow region near the critical
point (d is the height and R is the radius of liquid bridge).
Frank and Schwabe [7] did not find mode m = 0 in ground
experiments for liquids with Pr = 7, 49 and 65. The experi-
ments in the longest ever liquid bridges, I' = 5 and Pr =
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28, performed by Schwabe [8] in microgravity, revealed
convection cells drifting from the hot towards the cold side.
However, these measurements were performed above the
threshold of the 3D oscillatory regime, where modes with
m = 1 are present. Numerical simulations for aspect ratio
close to unity I' ~ 1 also could not reveal the m = 0 as
being critical, e.g., [2,9,10]. In short liquid bridges the rigid
walls impose a strong constraint to the appearance and
spreading of axial waves.

In the present Letter, we clarify the question of the
existence of axisymmetric wavy motions, and analyze the
consequences of the interaction between the modes with
m =0 and m = 1 that leads to novel, highly nontrivial,
flow regimes. Our analysis also explains the enigmatic flow
regime with alternating directions of hot or cold spot’s
motion observed in our numerical simulations, as well as
in the experiments of the Kawamura group [11].

Consider a three-dimensional convection in a vertical
cylindrical column; see Fig. 1. The fluid volume is held
between two differentially heated horizontal flat coaxial
disks of radius R, separated by a distance d. The tempera-
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FIG. 1. Geometry of the problem. Time histories are recorded
at four equidistant points P, P,, P3, P4, in azimuthal direction
for a fixed z and the same r.
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tures T), and T, (AT = T, — T, > 0) are prescribed at the
upper and lower solid walls, respectively. The free surface
is considered cylindrical and nondeformable. The surface
tension, o, and kinematic viscosity, v, are linearly decreas-

ing functions of temperature
o(T) = o9 — op(T = T,), w(T) = vy + vp(T = T,),

where oy = —d;0 >0, vy = dpv <O.

The problem is characterized by five independent non-
dimensional parameters. Three of them, the Marangoni
number, Ma, the Rayleigh number, Ra, and the relative
variation of viscosity, R,, are proportional to AT and
determined by the relations

O'TATd gBTATd3 VTAT
=—1—"" Ra=2"T"Z R, =

PoVoX Yo X Yo
Therefore their ratios, the dynamic Bond number,

Bodyn = Ra/Ma = gBTpodz/o-T

Ma , (1)

and the ratio R,/Ma, are constant. The Prandtl number is
Pr = vy/x and T' was defined earlier. Here B is the
thermal expansion coefficient, y and p are the thermal
diffusivity and density; subscript O notes quantity at refer-
ence temperature 7.

The governing Navier-Stokes, energy and continuity
equations are written in the nondimensional form (the
scales for time, velocity, and pressure are g, = dz/ V0,

Ven = vo/d, and Pey, = poV3,):
3.V + VUV = —VP+R, 28X VO + (I + R,O)AV
+ é.RaPr !0, 2)
9,0 + VVO = Pr1A@, 3)
V-V=0, “4)

where velocity is defined as V.= (V,, V,, V), ©® = (T —
T.)/AT is the dimensionless temperature, S =1 X
(0V;/dx; + aV,/dx;) is the strain rate tensor.

At the rigid walls no-slip conditions V(z =0) =
V(z =T) = 0, and constant temperatures ®(z = 0) = 0,
O(z =T) =1 are imposed. The stress balance between
the viscous fluid and the inviscid gas on the flat free surface
(r=1)is

(1+R,0)Se, + MaPr!(e,0, +e,r '9,)0 =0,
v, =0.

The free surface is assumed to be thermally insulated
9,0(1, ¢, z, 1) = 0. As the initial state, either a zero veloc-
ity field (for smaller Ma) or a solution obtained earlier for
another value of Ma (for larger Ma) has been chosen. No
dependence on initial conditions and no hysteresis have
been observed in simulations presented below.
Simulations are performed for silicone oil 1cSt with
Pr =143, Bog, =3.11, R,/Ma= —6.97 X 107® and
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FIG. 2. Time dependence of temperature oscillations at equi-
distant in azimuthal direction points P;, (a) Ma = 15830;
(b) Ma = 17200; (c) Ma = 17900.

aspect ratio I' = 1.8 (keeping in mind R = 2.5 mm and
d = 4.5 mm). Then the only control parameter is the
Marangoni number, Ma (i.e., the temperature difference
AT between the disks). The numerical code written in-
house was previously thoroughly validated, see Melnikov
et al. [3]. Hereafter, we examine the disturbance field: an
average in the azimuthal direction (1/27) [37 q(r, ¢, 2)d¢
is subtracted from its net field ¢(r, ¢, z) for any quantity q.

The system at the chosen set of parameters displays a
collection of remarkable features. The first intriguing fea-
ture is that, at the first critical point, it bifurcates from a 2D
stationary solution to a 2D time-dependent one. This rep-
resents excitation of the m = 0 mode when the perturba-
tion spreads along the z axis, parallel to the temperature
gradient as in extended cavities or thin layers [12]. In the
considered case of long liquid bridge (I' = 1.8) the wave
m = 0 appears as a critical one at Ma{" = 14160 and
persists up to 1.3Maf".

The same phase and amplitude of oscillations shown in
Fig. 2(a) at four different points P; is an unambiguous
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FIG. 3 (color online). Evolution of the frequency and of spatial
Fourier amplitude (in arbitrary units) of the temperature field.
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FIG. 4 (color online).

proof of perturbations with mode m = 0. An analysis of its
properties reveals that it is a hydrothermal wave which
spreads from the cold to the hot side. The Fourier spectrum
corresponds to a periodic motion with the basic frequency
g, which linearly grows near the instability threshold; see
Fig. 3.

Far above the first bifurcation, at Ma > 17 600, the flow
state is an azimuthal traveling wave with the mode m = 1
spreading in counterclockwise direction with frequency
;. The oscillations, shown at different azimuthal points
P; in Fig. 2(c) have a constant phase shift and constant
amplitude with time.

A novel type of flow organization, shown in Fig. 2(b), is
found in the intermediate range, at 16 520 < Ma < 17 600.
This type of oscillations does not correspond to either m =
0 or traveling/standing wave. The temporal Fourier spec-
trum reveals two basic frequencies [see Fig. 3(a)]: w, for
the mode m = 0 and w; for the mode m = 1 as well as
their combinations. On the plot of spatial amplitudes in
Fig. 3(b), this region is shown by dotted elliptical curve.

Five snapshots in Fig. 4 outline the temporal behavior of
the enigmatic flow regime. The first three snapshots show
that the structure of the temperature field corresponds to
traveling wave ““m = 17’ propagating in the counterclock—
wise direction. However, after 2/3 of a period, I = m,
the spots start rotating in the opposite, clockwise direction
(see direction of arrows). For the first time we report a new,
earlier unknown flow behavior; see movie in the supple-
mentary material [13].

In addition to the swing oscillations, amazing flow pat-
terns are observed on the interface. In far supercritical area
(Ma = 17900) the inclined TW with the m = 1 propa-
gates in azimuthal direction. In the case of mode coupling,
a collection of different flow patterns is observed. Snap-
shots of temperature disturbance field on the unrolled inter-
face for this case are shown in Fig. 5 (Ma = 17200). As a
general trend, the cells move from the hot to the cold side.
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Snapshots of temperature disturbance field in the horizontal cross section. Ma = 17 200.

Starting from almost four symmetrical cells [Fig. 5(a)] they
transform to a pattern typical for azimuthal TW [Fig. 5(b)].
Further, [Fig. 5(c)] each spot splits into triple cells and
wave in the upper part becomes inclined while cells on the
cold side are almost straight. The most remarkable situ-
ation is shown in Fig. 5(d), when cells near cold and hot
walls have a different inclination angle.

The nature of the observed ‘“‘swing regime” can be
understood by the analysis of the corresponding trajectory
in the phase space. Near the second critical point, when
azimuthal hydrothermal wave bifurcates from 2D state, the
temperature disturbances can be presented as

0= Z 0,,(r, z, 1) exp(ime) + c.c. (5)

Obviously, mode m = 1 is present in the flow organization
shown in Fig. 4. To examine its properties the temperature
field is decomposed in real and imaginary parts at fixed
horizontal position z = z*

A ) = fl rdr '[27 O(r, 2, p, e Pd
0 0

= [@(r, 1) cos(@)rdrde — if@(r, 1)
X sin(@)rdrde

The evolution of the real, Re(A;), and imaginary, Im(A,),
parts with time is shown in Fig. 6 for the classical traveling
wave m = 1, which exists in supercritical regime at Ma >
17900, and for the new type state at Ma = 17 200.

The observation of the displacement of the prescribed
temperature with time, (e.g. the position of a point on
trajectory) is performed from 2D steady state, i.e., at the
point “0O” where Re(A;) = Im(A;) = 0. In the case of
TW, see Fig. 6(a), during one period of oscillation this
point circumscribes a circle with a center in point “O”,
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FIG. 5 (color online).
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Snapshots of temperature disturbance field on the unrolled interface; Ma = 17 200.
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FIG. 6. Trajectories of dynamic system during one ‘‘fast”
period in the case of (a) traveling wave at Ma = 17900 and
(b) “new type” flow state when Ma = 17 200.

moving in counterclockwise direction. In the Fig. 6(b), the
observations are still performed from the point “O”’, but
the motion of the dynamic system generates an elliptical
trajectory that is no longer centered at “O”’, but is distant
from it. The nonlinear interaction with the mode m = 0
shifts the center of the small pseudocycle from the origin.

The shift is so strong, that though the rotation around the
center of the “‘ellipse” is permanently counterclockwise,
the observer can notice that during a part of the cycle (7, —
t1) the system of spots moves in a given direction, while in
another part of the cycle, it moves in the opposite direction
(t; = 1).

Complexity of the system is that at the end of a single
period the system does not return to its initial point, but
slightly shifts. In the following cycle the system starts from
a different azimuthal position. Within the next cycles the
system performs similar rotations at a fixed rate and simul-
taneously translates in a counterclockwise direction, also at
a fixed rate, see Fig. 7(a). If we continue observation in
time, we can see that the trajectory develops further to
reach a helicoidal form.

Finally, on the long time scale, the trajectory of the
system forms a torus (doughnut) produced by spiral
shapes; see Fig. 7(b). The time of formation of the dough-
nut shape is about 30 times larger than the period of a
single coil. The torus is a superposition of two motions: a
fast cyclic motion along the orbit ““of index zero” and slow
motion around the origin. Both original periodic structures,
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FIG. 7. (a) The progress of multicycles trajectory of dynamic

system when Ma = 17 200; (b) the final view of the trajectory of
the system.

i.e., m = 0 axial wave and m = 1 azimuthally traveling
m = 1 wave, are fast. The frequency of a slowly varying
stationary wave is the difference of the two frequencies
Wyow = W1 — Wy So, the trajectories shown in Fig. 7 can
be presented as (a; is the corresponding amplitude)

Al(t) =~ [Clo + a, exp(iwlt) + a_y eXp(—iwlt)
+ a, expiw; 1) + ...]exp(iwgowt). (6)

The diagram of observed regimes is shown in Fig. 3. Note
that near the point Ma§" = 16 520, where the quasiperiodic
regime is born, the amplitude A () is small, but its evolu-
tion described by (6) is essentially anharmonic. Near the
right border of the quasiperiodicity interval, Ma =~ 17 600,
the frequencies wy and w; become very close. In that
region, where m = 1 prevails, the flow looks as a TW
with slowly changing amplitude. Swing regime is found
for 1.77 <I' <2 when m = 1 (TW) and m = 0 coexist.

To conclude, we have reported an example of a simple
system which leads to complexity near the second critical
point Ma$'.

Note that the novel phenomenon is generic, because it
describes a generic bifurcation from an axisymmetric os-
cillatory regime and therefore it should be interesting to a
much wider community of physicists than just the experts
in the field of thermocapillary convection.
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