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A high velocity impact between a liquid droplet and a solid surface produces a splash. Classical work

traced the origin of the splash to a thin sheet of fluid ejected near the impact point. Mechanisms of sheet

formation have heretofore relied on initial contact of the droplet and the surface. We demonstrate that,

neglecting intermolecular forces between the liquid and the solid, the liquid does not contact the solid, and

instead spreads on a very thin air film. The interface of the droplet develops a high curvature and emits

capillary waves.
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The impact of a droplet hitting a solid surface produces a
splash. Despite nearly a century of study [1], the mecha-
nisms underlying splashing are poorly understood.
Empirical splash thresholds have been developed [2–5]
for the critical velocity of impact as a function of surface
tension, density, viscosity, and the surface roughness.
Recently, Xu, Zhang, and Nagel [6] demonstrated that
when the ambient air pressure decreases below a threshold,
splashing is suppressed and instead the droplet spreads
smoothly onto the solid surface.

Previous observations [7,8] discovered that splashing is
always preceded by the ejection of a thin fluid sheet near
the contact point, the breakdown of which causes the
splash. The most compelling rationale for sheet formation
relies on the droplet contacting the surface. After a time t, a
droplet of radius R falling at velocity V has penetrated the
solid surface at a distance Vt. The radius of the wetted area

is rwet ¼
ffiffiffiffiffiffiffiffiffiffiffi
2RVt

p
, giving drwet=dt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RV=2t

p
. The thin

liquid sheet is said to originate when the velocity of the
impact ‘‘rim’’ slows below the liquid sound velocity, caus-
ing an abrupt pressure increase at the contact line [7,9].

Observations show a liquid sheet launched into the air
and not along the surface, as the model predicts. Moreover,
a liquid film moving quickly along a solid surface experi-
ences enormous frictional forces which strongly resist
deformation of the sheet off the solid surface. This issue,
coupled with the role of ambient air [6], led us to the
hypothesis that the liquid sheet might originate due to the
interaction of the liquid with the intervening gas layer
before the droplet contacts the solid surface.

The goal of this Letter is therefore to study the approach
of a droplet to a solid surface through an intervening gas
layer, to search for potential fluid mechanical mechanisms
for sheet generation before contact. We demonstrate a rich
set of phenomena before a droplet contacts a solid surface.
Even at very high impact speeds, the combined action of
the gas layer and liquid surface tension allows the liquid to
avoid contact; instead the droplet spreads on a very thin
film of air and emits capillary waves.

We consider a droplet of radius R approaching a solid
surface with velocity V. Close to the surface, viscous and
pressure forces in the gas [with density �ðx; tÞ] decelerate
the droplet, deforming the interface, hðx; tÞ. We model this
by coupling flow in an incompressible, inviscid liquid
cylinder to a gas layer underneath. Parameters describing
the system include the viscosity of the gas �, the liquid
density �l, the liquid surface tension�, and the equation of
state of the gas, P ¼ P0ð�=�0Þ�, where P0 is the ambient
pressure of the gas at density �0 and � is a constant. Under
the compressible lubrication approximation [10] the gas
film deforms according to

12�ð�hÞt ¼ ð�h3pxÞx: (1)

The equation for the droplet balances the acceleration of
the liquid interface with the vertical pressure gradient:

�lhtt ¼ �pliquid
y . The liquid pressure is related to the gas

pressure using the Gibb’s condition pliquid ¼ pþ �hxx.
We can further relate py to px [11], resulting in the equa-

tion
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FIG. 1. Early stages in the evolution of a droplet impacting a
solid surface (corresponding to dimensionless parameters � ¼
5� 10�3, � ¼ 1:4, see text for definitions). The top [bottom]
panel shows a snapshot of hðx; tÞ [pðx; tÞ] as the drop approaches
contact. Note the pressure maximum causes a dimple in the
interface, and later splits into two maxima.
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�lhtt ¼ H ½px þ �hxxx�; (2)

whereH is the Hilbert transform. The interface is initially
assumed to be at y ¼ h0 þ x2=2R, where h0 is a large
distance from the wall and having a prescribed constant
speed ht ¼ �V. The numerical simulations reported below
solve this set of equations using a finite difference scheme
[12] for (1) and a spectral decomposition [13] for (2). The
validity of the model has been discussed in detail else-
where [11], which we have modified to include the com-
pressibility of the gas. The requisite conditions for the
model are � � �lVR and �V � RP0. A very similar
model was recently used to study the approach of a
liquid-coated sphere towards a layer of the same liquid
[14].

Figure 1 shows the initial stages in the evolution of the
interfacial shape and pressure distribution. The pressure
rises under the falling droplet, and eventually the drop
shape develops a dimple when it is at a distance H ¼ H�
from the surface, determined below. Subsequently, the
pressure develops two maxima as the interfacial curvature
steepens rapidly.

What setsH�? The pressure in the gas must be sufficient
to decelerate the falling liquid, locally, from velocity V to
rest in order to deform the droplet. Hence �lhtt � �lV=� ,
where ��1 ¼ V=H is the time scale the fluid is brought to
rest. Equation (2) then implies that Pgas=L� �lV=�þ
�=R=L, where L ¼ ffiffiffiffiffiffiffiffi

RH
p

is the axial length scale. For
the shape to deform, the gas pressure must dominate drop
inertia and surface tension.

When the drop is far from the substrate, � � �0, and the
gas pressure is set by incompressible viscous drainage.
Equation (1) then implies P��VR=H2. Assuming suffi-
ciently weak surface tension, the gas pressure gradient
balances the liquid deceleration. This gives the height

H� ¼ RSt2=3 at which the droplet deforms, where St ¼
�=�lVR is the Stokes number.
If the pressure in the gas, Pgas, becomes of order the

ambient pressure before the drop can deform, the under-
lying gas compresses. This happens when Pgas � P0, or

when H� ¼ Rð�V=RP0Þ1=2. Below this threshold height,
(1) reduces to ð�hÞt � 0 or �h ¼ �0H�, where �0 is the
initial gas density. Balancing the gas pressure gradient with

the liquid deceleration then gives H ¼ RSt2=3�ð2��Þ=ð2��1Þ,
where � � P0=ðR��1V7�4

l Þ1=3. Identical scaling laws can

also be derived for axisymmetric geometry.
We verified these scaling laws by simulating Eqs. (1) and

(2) for a wide range of St and � and tracked the height H�
when the shape of the interface first deviates from a spheri-
cal shape. At large �, the film thickness obeys the incom-

pressible scaling H � RSt2=3, while as � decreases,
compressible effects set in and the dynamics cross over
to the compressible scalings aforementioned. Figure 2
shows this crossover for both isothermal (� ¼ 1) and
adiabatic (� ¼ 7=5) equations of state. The experimental
splashing threshold [6] occurs in the compressible regime.
The figure also shows contours of constantH� as a function
of V and P0, corresponding to ethanol drops used by Xu,
Zhang, and Nagel [6]. The solid dots denote their measured
splash thresholds. The range of H� spanned by the splash-
ing threshold is from 200 nm to 2 �m, with thicker films
for slower drops and larger ambient pressures.
If we rescale the film thickness h in Eqs. (1) and (2) by

incompressible scaling RSt2=3, x by RSt1=3, � by �0,
and P by P0, only two dimensionless parameters charac-
terize the resulting dynamics: In addition to �, we have
� � �=RP0 comparing surface tension to compressibility.
For splashing, �� 10�4 and is negligible in the absence
of sharp curvatures. Hence we expect � to be the only

FIG. 2. Dimple height H� as a function of impact parameters. Left panel: H� versus � for a range of St. Open symbols denote � ¼ 1,
while the corresponding filled symbols denote � ¼ 1:4. The data collapse onto a single curve, with asymptotes agreeing with the
predictions. Regimes 1 and 2 correspond to the experiments of Xu, Zhang, and Nagel. Right panel: Contours of constant H� in nm for
ethanol drops of size corresponding to the experiments by Xu, Zhang, and Nagel using � ¼ 1:4 and a range of impact velocities V and
gas pressures P0. Filled squares denote regime 1 of threshold splashing curve observed by Xu, Zhang, and Nagel, while open squares
denote their regime 2.
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important parameter for the initial stages of droplet
deformation.

Figure 1 shows that subsequent to initial interfacial
deformation, the interface develops two symmetric kinks
that move away from the origin, with the film thickness at
the kink decreasing (hmin), and the maximum pressure pmax

increasing with time. The characteristic x scale of the kink
(l) rapidly decreases as hmin ! 0, causing the interfacial
curvature to increase. Figure 3 shows pmax and l as a
function of hmin for various values of �. At high �, we

have pmax � h�1=2
min and l� h3=2min, whereas in the compress-

ible regime at low � there is an initial transient regime with

pmax � h��
min and l� h1þ�

min before the aforementioned scal-

ing laws take over.
We now construct an approximate analytical description

for the leftmost kink, neglecting surface tension. The
height and density fields are described by the similarity
solution hðx; tÞ ¼ hminðtÞHð�Þ and �ðx; tÞ ¼ �maxRð�Þ,
where � ¼ ðx�UtÞ=lðtÞ is the similarity coordinate,
with �maxðtÞ the maximum density and U the dimension-
less speed of the kink, possibly depending on �. To the

right of the kink, the density is high and the gas is com-
pressible; to the left of the kink the density relaxes to
ambient and the pressure is determined by viscous stresses.
The transition from compressible to incompressible behav-
ior occurs at the kink and is advection dominated, i.e., @t �
U@x. Substituting the similarity solutions in the dimen-
sionless forms of (1) and (2) yields two dominant balances
in three unknowns hmin, �max, and l which can be solved
and translated back to dimensional form to give

l / R
U1=2

St2=3

�
hmin

R

�
3=2

; pmax / �V

RSt

�
RU3

hmin

�
1=2

: (3)

A similar analysis in the incompressible limit (� 	 1)
also reveals identical power laws for l and pmax, except
here p must be interpreted as the perturbation about the
ambient.
However, for small � a different solution emerges in the

initial stages of the compressible regime. These dynamics
are then well captured by �h ¼ Aþ fðtÞFð�Þ þ . . . ,
where A is time independent and initially dominates the
second term. This implies �max / 1=hmin and pmax /
1=h�min. Equation (2) then implies in dimensional terms

l / R
�lU

2

P0

�
RP0

�V

�
�=2

�
hmin

R

�
1þ�

;

pmax / P0

�
RP0

�V

�
�=2

�
hmin

R

���
:

(4)

Ultimately fðtÞ becomes larger than A, causing a regime
change to (3).
The solution thus described appears to support the no-

tion that liquid-solid contact occurs entraining a gaseous
bubble underneath. However, thus far we have ignored
surface tension. Although initially unimportant, the inter-
facial curvature hmin=l

2 diverges more quickly than the gas
pressure, leading to a crossover to a regime where surface
tension is important. Figure 4 continues the simulation of
Fig. 1 to this regime. The bottom panel shows that when the
capillary pressure �maxðhxxÞ balances the gas pressure
pmax, the behavior transitions to an entirely different re-
gime. Snapshots of the droplet interface in the top panel
demonstrate that instead of entraining a gaseous bubble
and contacting the solid surface, liquid-solid contact is
completely avoided. The pressure maximum saturates
and becomes a source of capillary waves.
To estimate when this crossover occurs, we use the

asymptotically valid power law, l/h3=2min. Balancing the

gas pressure gradient with the capillary pressure gradient

implies that the crossover occurs when l� RSt5=3=Ca,
where Ca is the capillary number �V=�. The gas layer

thickness scales as hmin � RSt14=9=Ca2=3, with the constant
of proportionality determined from simulations to be about
2.54. For a 2 mm diameter water drop moving at 0:5 m=s,
the scales are of order l�0:5�m and hmin�170 nm, re-
spectively; both these scales get smaller with increasing V.
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FIG. 3. Maximum pressure pmax (top) and curvature length
scale l (bottom) as a function of hmin shown in solid lines.
Labels denote values of �. The ambient pressure is subtracted
from pmax for � ¼ 100. The dashed lines denote various power-
law estimates (see text). The value � ¼ 5:1� 10�2 corresponds
to Fig. 1 of Xu, Zhang, and Nagel [6]. The inset on the bottom
shows hmin against t0 � t, where t0 is the time to contact.
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We have thus demonstrated that the nature of droplet
impact on a solid surface is very different than has been
assumed previously. Instead of parabolic point contact, the
interface deforms substantially, being effectively deceler-
ated to rest by the gaseous layer underneath. Although at
high impact velocities, surface tension is initially irrele-
vant, squeezing the gaseous layer out near contact creates a
kink. This kink moves at constant velocity and creates
capillary waves. There is at least some precedent in the
literature for our claim that liquid-solid contact is initially
avoided because of an intervening air layer: In their studies
of droplet bouncing on hydrophobic surfaces at velocities
lower than the splashing threshold, Richard and Quéré
[15,16] previously hypothesized the possibility of a thin
film of air being trapped between the droplet and the solid
substrate, though they were unable to observe it experi-
mentally. To our knowledge, these calculations represent
the first evidence explicitly documenting that the liquid
drop does not contact the wall but instead spreads on a
thin film of air, with a prediction for the film thickness.
These conclusions are also applicable to a solid sphere
impacting a liquid surface [17,18]. Our calculations ne-
glect intermolecular attraction between the liquid and

solid, which will ultimately cause contact, albeit on a
longer time scale [19].
Finally, with regards to splashing, the solution of (1) and

(2) computed does not show any indication of splashing.
Hence we are forced to conclude that other physical effects
like viscosity of the drop liquid, mean-free path of the gas,
and thermal and mass transfer should be included to obtain
splashing behavior. These effects are initially negligible
but can become important as the drop interface approaches
the wall along the self-similar solution. In this Letter, we
have demonstrated how to include the effects of surface
tension, but the same technique can be used for these other
physical effects. This approach allows for a systematic
investigation of droplet impact under these different
conditions.
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FIG. 4. (Top) Evolution of a liquid droplet impacting a solid
surface, with � ¼ 1:4 and � ¼ 5� 10�3, with surface tension
� ¼ 20. The interface no longer contacts the solid surface, and
capillary waves are emitted. (Bottom) Gas pressure (circles) and
capillary pressure (squares) as a function of hmin. hmin stops
decreasing when gas pressure balances surface tension.
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