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In spatiotemporal systems with advection, suppression of noise-sustained structures involves questions

that are outside of the framework of deterministic dynamical systems control (such as Ott-Grebogi-Yorke-

type methods). Here we propose and test an alternate strategy where a nonlocal additive feedback is

applied, with the objective to create a new deterministic solution that becomes robust to noise. As a

remarkable fact—though the needed parameter perturbations required have essentially a finite size—they

turn out to be extraordinarily small in principle: 10�8 in the free-electron laser experiment presented here.
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A range of systems displays dynamically induced hyper-
sensitivity to noise, which results in full-scale erratic fluc-
tuations. This typically happens for wave patterns
subjected to advection [1], which imposes a permanent
drift of the structure. Experimental examples include tur-
bulence in pulsed lasers [2,3], optical systems with trans-
verse patterns [4], plasmas [5], and fluid dynamics [6].

In these systems, control or more generally suppression
of erratic behaviors involves specific difficulties, linked to
their high dimensionality and to the nonperturbative effect
of noise. In particular, stabilization of a steady state is not a
sufficient criterion for effective system control (‘‘turbu-
lent’’ behaviors are even observed in systems with a glob-
ally stable steady state [7–9]). This makes traditional
methods for deterministic dynamical system control
(Ott-Grebogi-Yorke-type methods [10]) not directly
applicable.

In this Letter, we examine a feedback strategy requiring
very small perturbations, taking advantage of the strong
amplification properties (the so-called transient growth [8])
of the system, and we test its efficiency on a Ginzburg-
Landau equation with advection. The feedback introduces
a small nonlocal coupling between each site and another
site located at a finite distance. This presents pictorial
similarities with Pyragas-type schemes [11], though the
dynamical processes involved are strongly different. We
show that the stabilization process occurs via the creation
of a new deterministic solution, and that—in the local
saturation coupling case—the process can be understood
in terms of convective and absolute instabilities. After the
general study of the process on Ginzburg-Landau equa-
tions, we will present experimental results on the specific
system which motivated this work: the UVSOR-II free-
electron Laser.

To test the feedback strategy, we consider the following
advection-diffusion equation, with finite size:

etðz; tÞ þ vezðz; tÞ ¼ ezzðz; tÞ þ Rgð�zÞeðz; tÞ � Seðz; tÞ
þ ffiffiffiffi

�
p

�ðz; tÞ þ �eðzþ a; tÞ; (1)

where eðz; tÞ is complex (as it is typically associated with
the complex amplitude of a pattern). t and z represent time
and space, v the advection velocity (v is supposed >0 in
the following), R the real gain term for pattern formation
(R> 0 here). � is the noise amplitude, and �ðz; tÞ is a
delta-correlated white noise term. g represents the spatial
variation of the gain. gð�zÞ is supposed to vary slowly with
z and is supercritical [gð�zÞ> 0] in a finite region near the
center. � is a small parameter with ��1 characterizing the
system’s size. In this Letter, we take gð�zÞ ¼ 1� �2z2, and
the saturation term S is taken local in the first part of the
Letter:

S ¼ jeðz; tÞj2: (2)

The feedback is applied through the term �eðzþ aÞ, with
� and a the gain and spatial shift parameters, respectively.
Without feedback (� ¼ 0), it is known [8] that noisy

‘‘turbulent’’ behavior typically appears when the velocity

is beyond the convective-absolute threshold: v > vc ¼
2

ffiffiffiffi
R

p
. Beyond this point, the only stable attractor of the

deterministic system (with � ¼ 0) is the solution eðz; tÞ ¼
0. However, the system is subjected to transient growth,
and small noise is strongly amplified when it is advected
through the system (Fig. 1).
To achieve ‘‘control’’ (or more precisely to suppress

erratic behaviors) the idea is to create a ‘‘loop’’ in the
system, in the sense that the signal advected downstream
is reinjected upstream (a > 0 if v > 0). The conjecture is
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that the loop can be able to change the instability character
from convective to absolute, or—in other words—to create
a new nonzero deterministic solution without noticeable
transient growth. Numerical trials suggest that this strategy
can indeed be efficient even for rather small values of the
feedback coefficient [Fig. 2(a)], provided its order of mag-
nitude exceeds the noise level

ffiffiffiffi
�

p
. In contrast to the case

without feedback, the created deterministic solution (with-
out noise) is not significantly changed when noise is taken
into account, as shown in Fig. 2(b).

In equations of the family of Eq. (1) [i.e., with local
coupling and slow variations of gð�zÞ], the threshold of
turbulent-regular behavior is usually near the threshold of
convective-absolute instability [1,8] and to the threshold of
appearance of a nonzero deterministic solution. This mo-
tivates an analytical study of the convective-absolute
threshold in the presence of feedback. This consists of
studying the local stability properties of the eðz; tÞ ¼ 0
solution in the associated uniform system without noise
(� ¼ 0, � ¼ 0). Since the coupling induced by the feed-
back is nonlocal, care must be taken in the analysis as
shown by Papoff and Zambrini [12]. In the system line-
arized around the solution eðz; tÞ ¼ 0, we study the re-
sponse to a Dirac perturbation �ðzÞ at t ¼ 0. To test
whether the instability becomes absolute, we examine the
asymptotic behavior of eðz ¼ 0; tÞ when t ! 1. We have

eð0; tÞ ¼
Z 1

�1
efðkÞtdk; (3)

where

fðkÞ ¼ R� k2 � ivkþ �eika: (4)

We use the classical saddle point method [12] involving
extension of fðkÞ to the complex plane k ¼ kR þ ikI. The
first point consists of finding a closed integration contour
with the imaginary axis, passing through saddle points
(df=dk ¼ 0), with steepest descents. The numerical plot
of fðkÞ easily reveals that an adequate path passes through
the saddle ks defined by [df=dkðksÞ ¼ 0, <ðksÞ ¼ 0].
Analytic proof remains an open question. However, once
the saddle is identified, exact analytic results can be ob-
tained, since the convective-absolute threshold occurs
when <½fðksÞ� crosses zero. This leads to the following
condition for a and �:

� ¼ e�a

a
ð2�þ vÞ; (5)

with �ð<0Þ the imaginary part of ks at threshold, given by
the largest solution of (note that v > 0, a > 0)

�2 þ 2�

�
1

a
þ v

2

�
þ v

a
þ R ¼ 0: (6)

In Fig. 3(a) are displayed the convective and absolute
instabilities regions [whose boundary is the solution of
Eqs. (5) and (6)] for a fixed feedback level � ¼ 10�4. It
appears clearly that the desired domain of absolute insta-
bility increases with the feedback delay a. Furthermore, it
appears also that the feedback level � necessary to obtain a
nonzero deterministic solution (absolute instability) can be
extremely small depending on the feedback delay a as
shown on Fig. 3(b).

FIG. 1. Typical behavior without feedback in the convective
regime (vc > 2

ffiffiffiffi
R

p
), in Eq. (1). Parameters are � ¼ 10�2, R ¼ 1,

v ¼ 5:4. (a) Without noise (� ¼ 0), and with small initial
perturbation at t ¼ 0 (Gaussian of amplitude 10�10) at z ¼ 0.
The solution tends asymptotically to zero, but passes through a
state with high values [Oð1Þ]. (b) With noise (

ffiffiffiffi
�

p ¼ 10�10), a

noisy structure with Oð1Þ amplitude is observed.

FIG. 2. With ‘‘control’’ (� ¼ 10�4 and a ¼ 60).
(a) spatiotemporal plot in the same conditions as for Fig. 1(b).
(b) temporal average of jeðz; tÞj2 (full line). The solution of the
system without noise (� ¼ 0) is also plotted (dotted line).

FIG. 3 (color online). (a),(b) Stability diagrams showing the
new feedback-induced absolute stability regions. (c),(d)
Bifurcation diagrams with noise (� ¼ 10�4, full lines) and
without noise (dashed line) versus feedback shift a. (c)
Average total energy hRþ1

�1 jeðz; tÞj2dzi. (d) Fluctuations N2 ¼Rþ1
�1hjeðz; tÞj4 � hjeðz; tÞj2i2idx, the brackets indicating temporal

averaging). Parameters are R ¼ 1, v ¼ 4, � ¼ 10�2; the
convective-absolute threshold is ac ¼ 23:4.
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In the literature, absolute (respectively convective) in-
stabilities are generally used as a criterion for predicting
small (respectively high) sensitivity to small noise [1].
However for this criterion to hold, it is important to re-
member three validity conditions. The criterion is expected
to hold in the limit of large system size (here 1=� � 1 and
1=� � a), and small noise (here � � ffiffiffiffi

�
p

). As a third

condition, the new created solution should not present
large sensitivity to noise. We tested this last point numeri-
cally in the cases of local and global coupling.

With noise, a typical bifurcation diagram versus a is
presented in Figs. 3(c) and 3(d) (with

ffiffiffiffi
�

p ¼ 10�10 and

� ¼ 10�4). Creation of the new deterministic solution by
the feedback [Fig. 3(c)] is correlated to a rapid decrease of
the fluctuations [Fig. 3(d)]. Besides, the transition indeed
corresponds to the absolute threshold given by Eqs. (5) and
(6) (with systematic small shifts due to the finite size of the
system). This indicates that the created solution does not
display large transient growth when the absolute threshold
is noticeably exceeded. The absolute-convective transition
criterion gives quantitative information on the transition
between highly and weakly noisy behavior.

An opposite situation occurs in the complex case of
global saturation coupling, i.e., Eq. (1) with

S ¼
Z þ1

�1
jeðz; tÞj2dx: (7)

Feedback is also efficient (Fig. 4) in this case and a similar
interpretation applies: (i) the small feedback (� � ffiffiffiffi

�
p

)

creates a new stationary solution through a convective-
absolute transition, and (ii) with noise, the created solution
remains very close to the new stationary solution. How-
ever, dropoff of sensitivity to noise is obtained at values of
a that are significantly higher than the convective-absolute
threshold. This theoretical complication is expected to
affect generally systems with nonlocal saturation coupling,

as is suggested by works on global saturation in different
contexts [9]).
In a general way, this type of strategy presents simulta-

neously strong differences as well as hidden common
points with Ott-Grebogi-Yorke (OGY) type methods
[10]. When erratic regimes are successfully suppressed,
the amplitude of the perturbation applied to the system,
pðtÞ ¼ �eðzþ a; tÞ, cannot vanish in the limit of zero
noise (� ! 0), in contrast to OGY methods. However, in
practice, the needed perturbations reach extremely small
values [as displayed in Fig. 3(b)]. This was observed in
numerical simulations in various situations where
(i) transient growth is large, and (ii) the system’s size is
much larger than the spatial shift. As a reason for this
‘‘low-cost,’’ transient growth—though responsible for the
turbulent behavior through amplification of noise—also
serves as an amplification mechanism for the feedback
signal.
In the experimental problem that motivated this work,

stabilization of free-electron Laser oscillators (FEL), we
will show that the needed feedback is easily implemented
by using a delayed optical reinjection. This corresponds to
the coherent photon seeding technique (CPS) [2,13,14]
which is known to affect the so-called excess noise of
mode-locked lasers and synchronously pumped optical
parametric oscillators [14].
In these systems, an optical pulse experiences

round trips between two mirrors of a cavity, and the evo-
lution of the field pulse shape versus time T is usually de-
scribed by a master equation with the following structure:

eTð�;TÞþve�ð�;TÞ¼Fðeð�;TÞ;e��ð�;TÞ;gð�;TÞÞ; (8)

where � is the fast time resolving the pulse shape, and T is
the time expressed in units of the field cavity lifetime. v is
an adjustable parameter characterizing the mismatch be-
tween the cavity round-trip time, and the external forcing
frequency. The right-hand side contains diffusion and dis-
persion terms, a gain term g which usually obeys an addi-
tional differential equation [9,15–17], and a small noise
source � due to spontaneous emission. In the model for our
FEL [17], dispersion is, however, negligible, as it operates
in a picosecond regime. It has been shown that these lasers
possess a dynamics similar to the Ginzburg-Landau Eq. (1)
with global saturation coupling. In particular transient
growth, through the convective term ve� leads to turbulent
behaviors [2,3,9,17], in the sense of noise-sustained struc-
tures [1].
CPS consists of a small optical feedback with a delay

near the round-trip time �R or one of its multiples p�R [13].
In consequence, CPS can be modeled by the addition of a
term �eð�þ a; TÞ in Eq. (8), with � the fraction of light
reinjected in the mode by the feedback, and �a represent-
ing the feedback delay modulo �R. In this form, CPS hence
appears as a technique for which the present framework
holds.

FIG. 4. Numerical result in the global coupling case for a
velocity v ¼ 4. (a) Without feedback, (c) with delayed feedback
(a ¼ 140, � ¼ 10�4), (b),(d) evolutions of associated spatial
Fourier transforms j~eðk; TÞj2. Other parameters are R ¼ 1, � ¼
10�2,

ffiffiffiffi
�

p ¼ 10�10.
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We tested CPS on the UVSOR-II FEL (Okazaki, Japan)
[18] operating at 420 nm, by placing a plane feedback
mirror at a distance close to c�R ¼ 13:3 m from the output.
To our knowledge, no previous results were reported on
CPS applied on FELs; thus, we explored systematically the
(v, a) parameter space. Evolutions of pulse profiles
jeð�; TÞj2 and spectra j~eðk; TÞj2 were recorded in real
time using a streak camera (Hamamatsu C5680) and a
Fabry-Perot etalon followed by a CCD array. The symme-
try ðv; aÞ ! ð�v;�aÞ in Eq. (1) was verified experimen-
tally, and allowed to deduce the mirror position associated
to zero delay (a ¼ 0). At positive rf frequency detunings
(i.e., v > 0 [17]) stabilization systematically required a
feedback delay shorter than �R (i.e., a > 0) and vice-versa,
in agreement with theory. Streak camera recordings
[Figs. 5(a) and 5(c)] provided direct evidence of suppres-
sion of the noise-sustained structures expected by theory
(Fig. 4), and this was clearly correlated to a strong spectral
narrowing [Figs. 5(b) and 5(d)] similar to the classical laser
case [19]. The optimum value of a typically lead to spectral

widths below the spectrometer resolution (0:05 �A
FWHM). We calculated the fraction of power reinjected
in the TEM00 mode of the cavity (from inside to inside) to
be as low as �2 ¼ 0:5� 10�8.

In conclusion, spatiotemporal systems subjected to
advection-induced noise-sustained structures can be stabi-
lized using a simple ‘‘shifted-feedback’’ scheme. The pro-
cess involves the creation of a new steady state solution in
the associated deterministic problem. In the case of local
coupling, the appearance of the solution suffices to achieve
regular behavior, and analytical criteria can be found. In
the case of global saturation coupling, the situation is more
complicated, as the thresholds for steady state creation and
for dropoff of noise sensitivity occur at different parameter
values. However, beside these differences, in both cases the

minimum perturbations amplitude is limited by the noise
level in the system, as in the OGY-type methods.
Surprisingly the present stabilization process also gives a
framework to the process of coherent photon seeding al-
ready used in mode-locked lasers [13].
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FIG. 5. Experimental feedback-induced erratic regime sup-
pression in a free-electron laser (fraction of reinjected power
�2 � 0:5� 10�8, spatial shift a ¼ 130 ps). � is the relevant
spatial coordinate. Upper and lower figures are jeð�; TÞj2 and the
spectrum versus time j~eðk; TÞj2, respectively. (a),(b) Without
feedback. (c),(d) With feedback. Each streak camera recording
is synchronized with its corresponding spectrum.
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