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The breakup of spatial bright optical solitons due to oscillatory neck instability is experimentally

studied by propagating a laser beam in normally dispersive and self-focusing Kerr media. This intriguing

and unusual phenomenon, recently predicted for solitons of the ð2þ 1Þ-dimensional hyperbolic nonlinear

Schrödinger (NLS) equation, is observed in the spatially resolved temporal spectrum. The snake

instability that is known to occur in hyperbolic systems is also demonstrated to validate our experimental

approach. Our results not only apply to photonics but also to other fields of physics, such as hydro-

dynamics or plasma physics, in which the hyperbolic NLS equation is used as a canonical model.
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Symmetry-breaking instability is one of the most re-
markable physical phenomena that occurs in nonlinear
media. Among these phenomena, the symmetry-breaking
instability of plane solitary waves has attracted particular
attention and was first formulated for soliton solutions of
the nonlinear Schrödinger (NLS) equation and the
Korteweg–de Vries equation [1–3]. In modern science,
the NLS equation plays a major role by providing a ca-
nonical description of the dynamics of quasimonochro-
matic waves in weakly nonlinear media and therefore is
naturally encountered in a variety of fields such as plasma
physics, hydrodynamics, optics or in the description of
Bose-Einstein condensates [3,4]. In a seminal work,
Zakharov and Rubenchik [1] demonstrated that the soliton
solution of the ð1þ 1Þ-dimensional NLS equation is al-
ways modulationally unstable against perturbations involv-
ing higher dimensions. More specifically, they showed, in
the context of optics, that bright spatial soliton beams
spontaneously breakup when propagating in dispersive
media. Moreover, they predicted that the instability sce-
nario strongly differs between positive (hyperbolic NLS
equation) and negative (elliptic NLS equation) dispersion.
On the one hand, in anomalous dispersive media ruled by
the elliptic NLS equation, bright spatial solitons undergo a
neck type instability that causes spatiotemporal oscillations
of their amplitude. Several experiments in optics report on
the observation of this neck instability [5–7]. On the other
hand, in normally dispersive media ruled by the hyperbolic
NLS equation, solitons exhibit a snake type instability
characterized by a periodic undulation of the soliton
beam axis. Experimental demonstrations of the snake in-
stability were reported in hydrodynamics [8] and in optics
[9,10]. In these latter works, the transverse snake instabil-
ity of a spatially extended temporal bright soliton was
observed. In normally dispersive bulk media, Y-shaped
unstable modes are responsible for axial and conical emis-
sion [11].

In early theoretical works on the ð2þ 1Þ-dimensional
hyperbolic NLS equation, the snake type instability is

presented as being the only instability mechanism for the
bright solitons [1,3,4]. However, recently, the existence of
a novel mechanism that can be interpreted as an ‘‘oscillat-
ing’’ neck instability has been identified [12,13].
In this Letter, we propose an experimental study of this

new fundamental instability mechanism. More precisely,
temporal instabilities of spatial bright solitons of the two-
dimensional hyperbolic NLS equation are experimentally
studied by propagating a laser beam in a self-focusing and
normally dispersive nonlinear planar waveguide. We first
show that these solitons are unstable against spatiotempo-
ral periodic modulation of their amplitude, confirming in
this way the new ‘‘oscillating’’ neck instability mecha-
nism. We also demonstrate that the bright spatial soliton
beams undergo a snake type instability as theoretically
predicted in the early theoretical works. These results are
relevant to many research fields as far as the two-
dimensional hyperbolic NLS equation is used as a model.
It is encountered for instance to describe deep-water gravi-
tational waves [14] or cyclotron waves in plasma [15]. In
optics, this equation provides a standard description for the
propagation of optical beams in normally dispersive planar
waveguides with positive Kerr effect [16]. In dimension-
less variables, this equation is
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where x is the transverse (in-plane) coordinate, z is the
propagation coordinate, and t is the time. These variables
are normalized with respect to the beam width x0, the

diffraction length LD ¼ kx20, and the time t0 ¼ ðk00LDÞ1=2,
respectively, where k is the guided-mode propagation con-
stant and k00 ¼ @2k=@!2 > 0 the group velocity dispersion
coefficient. The amplitude c is linked to the slowly vary-

ing envelope of the electromagnetic field E by c ¼
ð�LDÞ1=2E, where � ¼ 2�n2=ð�LeffÞ, � is the wavelength,
n2 is the positive Kerr coefficient, and Leff is the effective
core thickness of the waveguide.
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The bright spatial soliton solution of Eq. (1) is c ¼
sechðxÞ expðiz=2Þ. However, because of chromatic dis-
persion [the third term in Eq. (1)], spatial solitons are
unstable against periodic temporal perturbations of

the form �ðx; z; tÞ ¼ �0ðu1 þ iu2Þeiz=2 with u1;2 ¼
½�1;2ðxÞei�tþ�z þ c:c:�, where the eigenmodes �1;2ðxÞ are
complex functions of the transverse coordinate x, � is the
temporal modulation frequency, and the instability gain is
given by the real part of �. Results reported in Ref. [1] and
subsequent analytical or numerical studies (see, e.g.,
Ref. [12] and references therein) show that the eigenmode
is an antisymmetric function, which reveals the onset of a
zigzag-shaped deformation of the soliton. This is illus-
trated in Fig. 1 (left column) by numerical simulation of
the propagation of a spatial soliton seeded by an antisym-
metric perturbation (odd � function). However, in
Refs. [12,13], the existence of a new branch in the insta-
bility gain spectrum has been demonstrated. This branch is
associated with symmetric eigenmodes and complex �
values, and therefore corresponds to an oscillatory neck
instability. This result is rather surprising in the sense
that the spatiotemporal self-focusing associated with the
neck instability is totally counterintuitive in the normal
dispersion regime. Our numerical simulations with sym-
metric seeds confirm this unexpected result, as shown in
Fig. 1 (right hand side). Note that snake and neck type
instabilities also coexist in the case of normal group ve-
locity dispersion for solitons in quadratic-media (self-
trapping due to wave-mixing processes) [17] and for the
radially symmetric ground state solution of the NLS equa-
tion with two transverse dimensions [18].

Experiments were performed with a 12 mm planar
waveguide made up of a 1:6 �m-thick guiding layer of

Al0:18Ga0:82As on the top of a 4 �m-thick cladding of
Al0:24Ga0:76As. The laser source is a picosecond mode-
locked fiber laser (10 MHz repetition rate, 5 ps full-width
at half maximum [FWHM]) amplified by an erbium/
ytterbium-doped fiber amplifier. The laser beam at the fiber
laser output is first collected by a �16 microscope objec-
tive and then passes successively through a quarter-wave
plate, a half-wave plate, and a free-space isolator. The
isolator is used to avoid any back-reflection into the am-
plifier and sets the beam polarization horizontally to excite
the TE0 mode of the waveguide. The laser beam is then
coupled into the waveguide with a 16:5 �m width
(FWHM). Our 12 mm-long waveguide is therefore 9:2LD

long. At the waveguide output, the beam, collected by a
�60 microscope objective, is directed to an optical spec-
trum analyzer and a two-dimensional spectrometer to im-
age the spatially resolved spectrum on an infrared vidicon
camera. The wavelength has been set to 1:535 �m, slightly
below the semiconductor half band-gap to ensure a positive
Kerr nonlinearity (n2 ¼ 1:6� 10�17 m2=W) together with
normal dispersion (k00 ¼ 1:04� 10�24 s2=m) and low
nonlinear absorption [19,20].
The spatiotemporal profile of the beam, as depicted in

Fig. 1, can not be easily recorded because of the time scale
involved in the instability process, the period of the tem-
poral modulation being typically around 300 fs. However,
because the formation of spatiotemporal periodic struc-
tures leads to the appearance of sidebands in the temporal
spectrum, the soliton instability can be easily studied in the
frequency domain. Moreover, through the use of a camera,
the spectrum at all values of the transverse coordinate x can
be recorded at once, providing the ‘‘spatially resolved’’
spectrum. As shown at the bottom of Fig. 1, the neck
instability being associated with symmetric eigenmodes,
the spatial profile of its frequency sidebands is symmetric.
Conversely, being characterized by odd eigenmodes, the
snake instability spectrum has frequency sidebands with
antisymmetric spatial profiles. The sideband antisymmetry
is revealed in Fig. 1 (bottom left) by the dark horizontal
stripes located at the center of the soliton beam.
Figure 2 shows the spatially resolved spectrum at the

output of the waveguide. At low power, the beam extends
up to 190 �m FWHM due to diffraction. As can be seen,
the profile along the frequency axis is slightly asymmetric
and ribbed because of the self-phase modulation experi-
enced in the amplifier. As the input power increases, the
width of the output beam decreases, with the narrowest
profile occurring at a power of 780Was shown in Fig. 2. At
the same time, a well developed spectral structure, with the
outermost peaks being the most intense, appears, as ex-
pected from the theory of self-phase modulation induced
spectral broadening [21]. The spatial width of these peaks
are of 34 �m FWHM, which is larger than the input beam
width because of losses, estimated to be around
3:8 dB=cm. Note that, because nonlinearity in the trailing
and leading edges of the pulses is too low to compensate

FIG. 1 (color online). Numerical simulation of the breakup of
a spatial soliton in hyperbolic systems. Left (right) column:
snake (neck) type instability. Bottom: density plots of the spa-
tially resolved temporal spectrum (logarithmic scale).
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for diffraction, the spatially resolved spectrum exhibits
low-amplitude broad spatial profiles near the central
frequency.

The spectral sidebands are not visible in Fig. 2 because
their amplitudes are too low in comparison with the main
peaks. However, when plotted in logarithmic scale as in
Fig. 3, the recorded spatially resolved spectral intensity

[j~Sð�; xÞj2] reveals the spectral sidebands as well as their
spatial profile. At the bottom of Fig. 3, the spatial intensity
profiles of the main central peak located at 1530 nm and of
the sideband at 1512 nm have been plotted together.
Clearly, the spatial intensity profile of the sidebands have
their maxima located at the beam center. In the temporal
domain, the sidebands naturally lead to a periodic modu-
lation of the soliton amplitude, i.e., a neck instability since
both the soliton beam and the sidebands spatial profiles
have the same symmetry. Note that the sideband profile is
narrower than the soliton profile but has broader wings,
which is in good agreement with numerical simulations
(see inset in Fig. 3).

In Fig. 4, the input and output spectra at the beam center
have been plotted when the soliton is formed. These spec-
tra were acquired by means of an optical spectrum ana-
lyzer. We observe the existence of two symmetric low-
amplitude sidebands in the input beam spectrum. These
sidebands are generated in the amplifier by modulational
instability that is unavoidable at the soliton power. Their
spatial profile having the same shape as the soliton beam,
these sidebands act as a natural seed for the neck insta-
bility. At the output, the spectrum (solid line) clearly shows
the amplification of the sidebands and the generation of
higher-order harmonics. We can therefore reasonably state
that our observations constitute a genuine proof of the
intriguing phenomenon of neck instability in the hyper-

bolic NLS equation, as recently predicted theoretically in
Ref. [13].
As can be seen in Fig. 5 (see also Ref. [22]), asymmetric

spatial sidebands have also been observed at the output of
the waveguide at soliton power. The sidebands intensity
profile now clearly shows a dip at the soliton center (as in
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FIG. 4 (color online). Experimental input (dashed line) and
output (solid line) normalized spectra measured at the beam
center in the same conditions as in Fig. 3.
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FIG. 3 (color online). Top: 3D-plot of the spatially resolved
temporal spectrum of the soliton beam shown in Fig. 2. The
logarithm of the spectral density (j~Sj2) is plotted to reveal the
spatial structure of both the soliton beam and the spectral side-
bands. These sidebands are the signature of the neck type
instability of the soliton beam. Bottom: spatial profiles at two
different wavelengths, left: in the main spectral peak, right: in
the sideband. The inset shows the corresponding spatial profiles
computed from numerical simulation of the soliton propagation.

1560

1540

1520

(n
m

)

1560

1540

1520

(n
m

)

0-100 100

x ( m)

P=20W

P=780W

FIG. 2 (color online). Experimental results showing the for-
mation of a spatial soliton at the output of a 12 mm-long planar
waveguide. At high power, strong spatial confinement of the
energy is observed and a spatial soliton is formed. Diffraction in
the pulse wings manifests itself as bright stripes near the pulse
spectrum center.
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Fig. 1), a spectral feature that reveals the antisymmetric
nature of the sideband profiles and leaves no doubt about
the development of the snake instability. Note that we have
obtained antisymmetric sidebands only when injecting
the beam in the vicinity of small defects of the entrance
face of the waveguide. Since the beam at the output of the
waveguide never exhibits any significant distortions, we
concluded that the defects only slightly affect the input
beam phase profile, without preventing soliton formation.
Through numerical simulations, we have observed that
such small asymmetric phase distortions are sufficient to
seed the snake instability. The asymmetry observed in the
output spatial profile of the sidebands (see Fig. 5) can be
easily explained by the fact that both the snake and the
neck instabilities coexist in the system and that they are
simultaneously seeded. Note, however, that the small
asymmetry of the seed is compensated by the larger gain
of the snake instability with respect to the neck instability
(see Ref. [13]). The frequency sidebands being amplified
by almost 10 dB, our experiment constitutes an experimen-
tal evidence of the snake instability of the bright soliton of
the ð2þ 1ÞD hyperbolic NLS equation. This observation
has recently been the object of a detailed report [23]. We
described it here briefly to show the validity of the experi-
mental approach that we chose to identify the neck
instability.

In summary, through the experimental study of the
propagation of a spatial soliton in a normally dispersive
and self-focussing planar semiconductor waveguide, we
have provided the first experimental demonstration of the
counterintuitive neck type modulational instability of the
spatial bright soliton of the hyperbolic ð2þ 1ÞD cubic
nonlinear Schrödinger equation [12,13]. Our results con-
firm that space-time coupling leads to complex behaviors
in nonlinear systems since in a ð1þ 1ÞD system (e.g., an
optical fiber), continuous waves are stable when propagat-
ing in a normally dispersive focusing Kerr medium [21].

The neck instability has been identified through the analy-
sis of the spatially resolved spectra where the amplification
of spectral sidebands with symmetric spatial profiles was
clearly identified. Comparison with the asymmetric spatial
profiles of the sidebands associated with the snake insta-
bility allowed us to validate our experimental approach.
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FIG. 5 (color online). Experimental signature of the snake
instability of the bright soliton. See caption of Fig. 3 for
explanation.
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