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Light propagation in all-dielectric rod-type metamaterials is studied theoretically. The electric and

magnetic dipole moments of the rods are derived analytically in the long-wavelength limit. The effective

permittivity and permeability of a square lattice of rods are calculated by homogenizing the corresponding

array of dipoles. The role of dipole resonances in the optical properties of the rod array is interpreted. This

structure is found to exhibit a true left-handed behavior, confirming previous experiments [L. Peng et al.,

Phys. Rev. Lett. 98, 157403 (2007)]. A scaling analysis shows that this effect holds at optical frequencies

and can be obtained by using rods made, for example, of silicon.
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Metamaterials (MMs) are artificial structures made of
microscopic elements whose collective behavior results in
unusual macroscopic optical properties [1–3]. Great effort
is currently underway to scale MMs down to optical fre-
quencies [4–7]. Such an achievement would indeed make
possible the development of novel, sophisticated, optical
technologies in many areas, including telecommunica-
tions, life sciences and solar power.

Recent works [8–12] have made a step forward by
proposing to use high-permittivity dielectric objects in-
stead of metallic ones to avoid the losses and saturation
effects inherent to the metal in the optical range [13]. This
approach relies on the resonant modes that dielectric ob-
jects support [14]. Collections of resonators are expected to
strongly modify the propagation of light at frequencies
close to the resonances. Previous studies have, for ex-
ample, noticed a correlation between the resonances of
single dielectric objects and the opening of photonic
band gaps (PBGs) in arrays of them [15,16]. In the context
of MMs, arrays of dielectric rods in p-polarized light
(magnetic field parallel to the axis of the rods) have been
shown to possess an effective, dispersive, magnetic perme-
ability [17,18]. Interestingly, it has further been suggested
that dielectric rods in s-polarized light (electric field par-
allel to the axis of the rods) could exhibit both electric and
magnetic dipole resonances, and thus, possibly constitute a
so-called left-handed (LH) medium with simultaneously
negative permittivity and permeability [11,12]. These di-
pole resonances have been explained in terms of strong
charge displacements and displacement currents, but to our
knowledge, no theory on the electric and magnetic dipole
activities of dielectric rods and their role in the optical
properties of rod arrays has been given up to now. This,
however, is an important matter if such structures are to be
used in practical MM-based applications operating at opti-
cal frequencies.

In this Letter, we present a theoretical study on the
optical properties of periodic arrays of dielectric rods
from the point of view of MMs. Our objective is to prove

that these structures offer a similar control over light as
conventional metallic MMs and that typical MM properties
(e.g., left-handedness) can be observed at optical frequen-
cies in very realistic and simple designs. We proceed as
follows. First, we describe the electric and magnetic dipole
activities of isolated rods by deriving explicit expressions
of the corresponding dipole moments in the long-
wavelength limit. Second, we compute the effective mate-
rial parameters of a square lattice of rods from these
expressions and explain how the electric and magnetic
dipole resonances of the rods cause the appearance of
PBGs and LH dispersion curves. Third, we show that these
effects can be reproduced at different frequencies by tuning
the rod resonances and illustrate our claim by the numeri-
cal demonstration of a true LH behavior at optical
frequencies.
We start by considering an isolated, infinitely long di-

electric rod of circular cross section C, radius R and
relative permittivity ", surrounded by air, in a Cartesian
coordinate system of unit vectors ux, uy and uz, where the

rod axis is along the latter. A plane wave of wave vector k
(jkj ¼ k ¼ 2�=�) propagating along the x direction illu-
minates the rod. The following theory is given for
s-polarized light but similar steps could be carried out in
the p polarization.
The scattering of light by circular cylinders is described

by Mie theory, which provides exact analytical solutions of
Maxwell’s equations [14]. In particular, the scattered elec-
tric field Es in the far zone (kr � 1) is given by:

E sðrÞ ¼
ffiffiffiffi
2

�

s
eikrffiffiffiffiffi
kr

p e�ið�=4Þ
�
b0 þ 2

Xþ1

n¼1

bn cosðn�Þ
�
uz; (1)

where � is the angle with respect to the x direction and bn
the nth-order Mie scattering coefficient of the rod. In fact,
the polarization per unit volume P ¼ "0ð"� 1ÞE induced
in the dielectric rod acts as a source for the scattered field.
Es can then be written in an integral form using Green’s
theorem as [19]:
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whereHð1Þ
0 is the zeroth order of the Hankel function of the

first kind. The integral has been restricted to C because the
polarization vanishes outside the rod.

A second expression of the far-field expansion in Eq. (1)
can now be derived by expanding Eq. (2) into a series of
multipoles. This technique differs from the familiar three-
dimensional multipole expansion of the magnetic vector
potential [20] because the bidimensionality of our problem
necessarily implies a strong effect of the light polarization

on the scattered field. In the far zone,Hð1Þ
0 can be expressed

by its asymptotic form [21]. The multipole expansion is
introduced by writing jr� r0j ’ r� ur � r0, where r ¼
rur, yielding the approximations

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kjr� r0jp ’ ffiffiffiffiffi

kr
p

and

eikjr�r0j ’ eikre�ikur�r0 . The exponential e�ikur�r0 is then

expanded in powers of k as e�ikur�r0 ¼ P1
n¼0

ð�ikur�r0Þn
n! .

By inserting these expressions in Eq. (2), we obtain the
polarized multipole expansion of Es in the far zone:
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ffiffiffiffi
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eikrffiffiffiffiffi
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p e�ið�=4Þ X1
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fnðrÞ (3)

with fnðrÞ ¼ ik2

4
ð�ikÞn
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R
Cður � r0Þnð"� 1ÞEðr0Þd2r0.

The successive terms of this expression describe 2D
multipole radiation fields at large distances, the zeroth
(n ¼ 0) and first (n ¼ 1) orders being assimilated to elec-
tric and magnetic dipoles, respectively. The corresponding
scattering orders can be written as a function of the electric
and magnetic dipole moments per unit length, defined,
respectively, by p ¼ R

C Pðr0Þd2r0 and m ¼ 1
2 �R

C r
0 � Jðr0Þd2r0, with J ¼ @P=@t the polarization current

density. By equating them with their counterpart in Eq. (1),
we can write p and m as a function of the Mie scattering
coefficients b0 and b1, respectively, as:

p="0 ¼ ð4b0=ik2Þuz (4a)

mZ0 ¼ ð�4b1=ik
2Þuy (4b)

with Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0="0

p
the free space impedance. These two

expressions describe analytically the dipole activities of
isolated rods in the long-wavelength limit in terms of their
scattering matrix.
The complex modulus of b0, b1, and b2 is plotted in

Fig. 1 for rods with permittivity " ¼ 600 [11]. On the
whole, jb0j and jb1j are found to remain larger by a few
orders of magnitude than the higher-order coefficients,
suggesting that the electric and magnetic dipole activities
of the rods contribute the most to the optical properties of
rod arrays. Higher-order multipoles, which are expected to
induce spectrally narrow optical features near their reso-
nance frequencies, can safely be ignored.
Now considering an array of dielectric rods, in the long-

wavelength limit, the corresponding array of dipoles can be
described as an effective medium with permittivity and
permeability dyadics ��" and ���, respectively. These macro-
scopic parameters are calculated from the microscopic
polarizabilities of the rods through a process of homoge-
nization, which takes the density of resonators and their
mutual interaction into account. In the present case, the
refractive index of the effective medium is defined as
neff ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

"zz�yy
p

. Considering that the incident electric field

amplitude has been normalized to unity and using the
relations jHij ¼ jEij=Z0 and Eq. (4), the electric and
magnetic polarizabilities per unit length of the rods can
be written as �e

zz ¼ pz="0E
i
z ¼ 4b0=ik

2 and �m
yy ¼

my=H
i
y ¼ 4b1=ik

2, respectively.

The effective material parameters of a square lattice of
rods with permittivity " ¼ 600 and radius R ¼ 0:68a=3,
where a is the lattice periodicity, are calculated using the
nonlocal homogenization model proposed by Silveirinha
[22] in the approximation of wave vectors close to the �
point. For the sake of comparison, this structure is similar
to the one studied in Ref. [11]. As shown in Fig. 2 (left), the
first electric dipole resonance of the rods [first inset of
Fig. 1] induces a strong resonance of the permittivity,
which results in the opening of a wide frequency range
of negative permittivity. At a=� ’ 0:07, the first magnetic

FIG. 1 (color online). jb0j (thick blue solid line), jb1j (thin
gray solid line), and jb2j (thin red dashed line) for rods with " ¼
600. The insets show the amplitude of the scattered electric field
at the first maxima of jb0j and jb1j.

FIG. 2 (color online). (Left) Real parts of "zz (thick blue line)
and �yy (thin gray line) of the rod array (R ¼ 0:68a=3, " ¼
600). (Right) Dispersion curves of the structure calculated from
the effective material parameters (black solid lines) and by the
PWE method (gray dashed lines).
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dipole resonance of the rods [second inset of Fig. 1] in-
duces a sharp resonance of the permeability, which takes
negative values within the negative permittivity range,
thereby inferring a LH behavior in accordance with Peng
et al. [11]. In Fig. 2 (right), we compare the dispersion
curves of the effective medium calculated using the rela-
tion qx ¼ neff!=c and those of the rod array, calculated by
the plane wave expansion (PWE) method [23]. Apart from
symmetry degeneracies and higher-order resonances,
which have not been considered in our theory, the main
optical features of the rod array are very well reproduced.
We can then confidently say that this structure truly be-
haves as a medium with negative permittivity in the two
lower-frequency PBGs, and as a LH medium in the narrow
frequency range at a=� ’ 0:07.

At this point, we have shown that the optical properties
of periodic arrays of rods result from the collective re-
sponse of the resonant rods. These structures rely on simi-
lar principles as conventional metallic MMs and thus, may
be used as such to control the propagation of light.

Because of the growing interest in developing MMs for
the optical range, it is now important to investigate the
scaling properties of all-dielectric rod-type structures.
Previous studies have limited their work to high-" rods to
place their resonances in the homogeneous regime (� � a,
R) and prevent them from exhibiting a strong spatial
dispersion [8,11,12]. Our theory provides additional infor-
mation on this matter. As shown above, the electric and
magnetic dipole activities of dielectric rods are intrinsi-
cally related to their Mie scattering coefficients. The scal-
ing properties of rod-type structures may therefore be
understood by studying the variation of these coefficients
with ". Decreasing it reduces the optical size of the rods
and thus, the wavelength � at which they resonate. This is
evidenced in Fig. 3 (left), where the wavelength positions
of the electric and magnetic dipole resonances (indicated
by the maxima of jb0j and jb1j) are shown to depend
almost linearly on the rod refractive index n ¼ ffiffiffi

"
p

. In
particular, the magnetic dipole resonance observed at
�=R ’ 63 (a=� ’ 0:07) in rods with " ¼ 600 is shifted

to �=R ’ 8:8 (a=� ’ 0:5) when " ¼ 12. As shown in
Fig. 3 (right), this permittivity is sufficiently high for b0
and b1 to remain the most significant coefficients up to the
resonance frequency of b2 at R=� ’ 0:17. The LH behavior
is therefore expected to hold.
This is verified by comparing the photonic band struc-

tures and second-band isofrequency curves (IFCs) of the
higher and lower-" structures calculated by the PWE
method. As observed in Figs. 4(a)–4(d), their optical fea-
tures are readily similar. First, the LH dispersion curves
lying at a=� ’ 0:07 are pushed up to a=� ’ 0:5, as ex-
pected. The splitting between the two higher-frequency
bands is larger in the latter structure because the decrease
of " broadens the rod resonances [Fig. 3 (right)] and
increases the inter-rod interaction [15]. Second, the IFCs
both exhibit a strong spatial dispersion even in the vicinity
of the � point. This observation supports previous studies
[24,25], arguing that large wavelength-to-period ratios do
not necessarily result in isotropic responses. The spatial
dispersion here is naturally inferred by the magnetic dipole
activity of the structure [26,27]. The lattice symmetry
therefore plays an important role in the spatial response
of the rod array in the LH frequency range.
To evidence the existence of a LH behavior at optical

frequencies, we finally simulate the propagation of light in

FIG. 3 (color online). (Left) Wavelength positions of the two
lower-frequency maxima of jb0j (thick blue lines) and jb1j (thin
gray lines). (Right) jb0j (thick blue solid line), jb1j (thin gray
solid line) and jb2j (thin red dashed line) for rods with " ¼ 12.

FIG. 4 (color online). Photonic band structures (a),(c) and
second-band IFCs (b),(d) of the higher and lower-" rod arrays
(top: " ¼ 600, bottom: " ¼ 12). The IFCs are labeled by their
reduced frequency a=�. (e) Steady-state amplitude of the electric
field of light at � ¼ 1:55 �m incident at 20� on the lower-"
structure (R ¼ 158 nm, a ¼ 698 nm).
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the lower-" structure with the 2D finite-difference time-
domain method [28]. Light is incident at an angle of 20�
and the structure is tuned to near-infrared wavelengths
(� ¼ 1:55 �m) by using rods of radius R ¼ 158 nm and
a lattice of periodicity a ¼ 698 nm. As shown in Fig. 4(e),
the phase of the propagating field in the rod array is
opposite to that of the field in free space, which indicates,
as expected, a LH behavior.

Taking all the above into consideration, we come to the
conclusion that the LH behavior initially observed by Peng
et al. [11] is not specific to large wavelength-to-period
ratios, for this effect is primarily a matter of coupled
resonances.

It is particularly important to note that the physics
involved here remains the same even though, in lower-"
structures, � becomes comparable to a. In this regard, it
would be interesting in future studies to investigate to what
extent these structures can be considered as homogeneous.
Concurrently, our theoretical results could be used to clar-
ify the origin of the many LH behaviors that have been
reported in rod-type photonic crystals in the past few years
(see, e.g., Ref. [29]). Experiments could also be initiated at
once, as techniques to fabricate silicon-based (" ’ 12) rod-
type structures already exist [30]. Silicon holds a preemi-
nent position in photonics and is therefore a very interest-
ing candidate material for all-dielectric MMs operating at
optical frequencies. Rod-type structures are finally likely
to integrate well on photonic platforms, considering that
high coupling efficiencies can be obtained even at large
angles of incidence owing to the rod resonances [31].

To conclude, we have presented a theoretical study on
the optical properties of all-dielectric rod-type structures,
using an approach based on the electric and magnetic
dipole activities of the rods. This work constitutes a first
proof that dielectric rods can be used to design true MMs at
optical frequencies. Because of the large amount of experi-
mental knowledge in fabricating nanoscale dielectric struc-
tures, exciting applications, such as all-dielectric
invisibility cloaks, may be realized in the optical domain
in the near future.
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