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A nonperturbative study of field theories with a complex action, such as QCD at finite baryon density, is

difficult due to the sign problem. We show that the relativistic Bose gas at finite chemical potential has a

sign and ‘‘silver blaze’’ problem, similar to QCD. We then apply stochastic quantization and complex

Langevin dynamics to study this theory with nonperturbative lattice simulations. Independence of

chemical potential at small and a transition to a condensed phase at large chemical potential are found.

Lattices of size N4, with N ¼ 4, 6, 8, 10, are used. We show that the sign problem is severe, however, we

find that it has no negative effect using this approach. This improves the prospects of applying stochastic

quantization to QCD at nonzero density.

DOI: 10.1103/PhysRevLett.102.131601 PACS numbers: 11.15.Ha, 12.38.Mh

Introduction.—Field theories with a complex action are
difficult to treat nonperturbatively. Because the weight in
the path integral e�S ¼ je�Sjei’ is not real, standard nu-
merical approaches based on a probability interpretation
and importance sampling cannot be applied. This has hin-
dered progress in condensed matter and many-body theo-
ries, including frustrated quantum spin systems and
strongly correlated electronic systems away from half fill-
ing. An outstanding example is QCD at nonzero baryon
density. Several methods have been devised to circumvent
the sign problem in QCD: reweighting [1,2], Taylor series
expansion [3,4], imaginary chemical potential and analytic
continuation [5,6], and the use of the canonical ensemble
[7,8] and the density of states [9]. In general, these methods
can only be applied in a limited region of the phase
diagram (such as high temperature and small chemical
potential), suffer from overlap problems, and/or are re-
stricted to small volumes.

At vanishing temperature, so far all methods have failed.
It is well known what is supposed to happen: if � is the
quark chemical potential {so that the fermion determinant
satisfies detMð�Þ ¼ ½detMð��Þ��g, one expects a transi-
tion to a condensed phase (nuclear matter) at a critical
chemical potential �c � mN=3, where mN is the nucleon
mass. Below �c, physical observables should be com-
pletely independent of � (at strictly zero temperature),
even though microscopically � explicitly enters in the
Boltzmann weight. This exact cancellation is known as
the ‘‘silver blaze’’ problem [10] and is intimately tied to
the sign problem, as has been demonstrated in Random
Matrix Theory [11–13]. It is an outstanding challenge to
probe the QCD phase diagram in the low-temperature
region at nonzero chemical potential.

The sign problem in QCD does not arise because of the
anticommuting nature of fermions. Instead, it is due to the
behavior of the action under complex conjugation when the

chemical potential is nonzero. Therefore, this sign problem
can also be studied in bosonic field theories with a chemi-
cal potential coupled to a conserved charge and an action
satisfying Sð�Þ ¼ ½Sð��Þ��. These theories suffer from
exactly the same sign and silver blaze problems as QCD. In
this Letter, we consider the relativistic Bose gas at finite
chemical potential and study its silver blaze problem with
nonperturbative lattice simulations employing stochastic
quantization [14]. Stochastic quantization does not rely
on the interpretation of e�S as a probability weight.
Instead, the proper distribution is obtained as the equilib-
rium distribution of a stochastic process, described by a
Langevin equation. In the case that the action is complex,
the Langevin dynamics is complexified [15,16]. See
Ref. [17] for a comprehensive review and Ref. [18] for
an early application to the SU(3) spin model at finite
chemical potential. In the past, complex Langevin dynam-
ics has been hindered by numerical instabilities and uncer-
tainty about convergence, see, e.g., Ref. [19]. Recently,
some of these problems were alleviated by the use of more
refined Langevin algorithms [20–23]. In particular, in
Ref. [23] the method has been applied to several models
at finite chemical potential. In U(1) and SU(3) one link
models, where the sign problem is mild, excellent results
have been obtained. For QCD with static quarks, first
results on a 44 lattice indicate a transition from a low-
density confining to a high-density deconfining phase.
Even though the sign problem appears to be severe, ob-
servables are under control. In this Letter, we provide
considerable evidence that stochastic quantization evades
the sign problem and is capable of handling the silver blaze
problem, in the context of the relativistic Bose gas at finite
chemical potential.
Bose gas at finite chemical potential.—We consider a

self-interacting complex scalar field in d ¼ 4 Euclidean
dimensions, with the lattice action
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xe
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The lattice spacing a ¼ 1, and we take m2 > 0. The lattice
four-volume is � ¼ N3

sN�, where Ns (N�) are the number
of sites in a spatial (temporal) direction. As usual, chemical
potential � is introduced as an imaginary constant vector
potential in the temporal direction. Note that Sð�Þ ¼
½Sð��Þ��. At zero temperature and in the thermodynamic
limit, bulk physical observables are strictly independent of
the chemical potential as long as �<�c, with �c the
critical chemical potential. At � ¼ �c, one expects a
second order phase transition to the Bose condensed phase,
where the density hni ¼ ð1=�Þ@ lnZ=@� is nonzero.
Ignoring interactions, the critical chemical potential is
given by j�0

cj ¼ 2arcsinhðm=2Þ (corresponding to j�0
cj ¼

m in the formal continuum limit). Interactions are expected
to increase this value [24]. The exact �-independence
when �<�c, even though microscopically � is mani-
festly present, is the silver blaze problem.

Complex Langevin dynamics.—To apply stochastic
quantization, we start with the Langevin equation

@�xð�Þ
@�

¼ � �S½��
��xð�Þ þ �xð�Þ; (2)

where � is the Langevin time and � is Gaussian random
noise. Since the action is complex, stochastic quantization
relies on a complexification of the fields. The original field
is first written in terms of two real fields �a (a ¼ 1, 2) as
� ¼ 1ffiffi

2
p ð�1 þ i�2Þ. In terms of these, the action reads

S ¼ X

x

��
dþm2

2

�
�2

a;x þ �

4
ð�2

a;xÞ2 �
X3

i¼1

�a;x�a;xþî

� cosh��a;x�a;xþ4̂ þ i sinh�	ab�a;x�b;xþ4̂

�
: (3)

Here, the antisymmetric tensor 	ab, with 	12 ¼ �	21 ¼ 1,
	11 ¼ 	22 ¼ 0, is introduced and summation over repeated
indices is implied. The term proportional to sinh� causes
the action to be complex.

These real fields are now complexified as

�a ! �R
a þ i�I

a ða ¼ 1; 2Þ; (4)

and the complex Langevin equations read

�R
a;xðnþ 1Þ ¼ �R

a;xðnÞ þ 	KR
a;xðnÞ þ

ffiffiffi
	

p
�a;xðnÞ; (5)

�I
a;xðnþ 1Þ ¼ �I

a;xðnÞ þ 	KI
a;xðnÞ: (6)

Here, Langevin time is discretized as � ¼ n	, with 	 the
time step, the noise � is real and Gaussian, with
h�a;xðnÞi ¼ 0, h�a;xðnÞ�b;x0 ðn0Þi ¼ 2�nn0�ab�xx0 , and the

drift terms are determined by

KR
a;x ¼ �Re

�S

��a;x

j�a!�R
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a
; (7)

KR
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a
: (8)

Explicitly, they read
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Observables are written in terms of the complexified fields
using the replacement (4). For instance, the square of the
field modulus is given by

��� ¼ 1

2
�2

a ! 1

2
ð�R2

a ��I2
a Þ þ i�R

a�
I
a; (11)

and the density is given by n ¼ 1
�

P
xnx, with

nx ¼ ð�ab sinh�� i	ab cosh�Þ�a;x�b;xþ4̂ (12)

! ð�ab sinh�� i	ab cosh�Þð�R
a;x�

R
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��I
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I
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I
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�Þ: (13)

All observables now have a real and imaginary part.
Results.—We have solved Eqs. (5) and (6) numerically,

using a Langevin stepsize 	 ¼ 5� 10�5, a total number of
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FIG. 1 (color online). Real part of the density, Rehni, as a
function of chemical potential for lattices of size N4, with N ¼
4, 6, 8, 10. The parameters are m ¼ � ¼ 1 and stepsize 	 ¼
5� 10�5. The inset shows a blowup around the transition. In the
thermodynamic limit, the density vanishes below the critical
chemical potential.
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5� 106 Langevin time steps, and m ¼ � ¼ 1. Lattices of
size N4, withN ¼ 4, 6, 8, 10, were used. No instabilities or
runaway solutions were encountered. The real part of the
density is shown in Fig. 1 for chemical potentials 0 � � �
1:7. Imaginary parts of observables were found to be con-
sistent with zero, as they should be. A transition between a
zero-density phase and a condensed phase with nonzero
density is clearly visible. The inset shows a blowup of the
transition region. Nonanalyticity associated with a phase
transition can only occur in the thermodynamic limit. We
observe that with increasing four-volume, the transition
becomes sharper and the density goes to zero below �c �
1:15, as is expected in a second order phase transition [26].
Finite size effects are comparable to what is found analyti-
cally in the noninteracting system, when j�j< j�0

cj. In
Fig. 2, we show the real part of the square of the field
modulus (11). Again, we observe �-independence below
�c and a sharp rise above. We note that the value at � ¼ 0
is obtained using real Langevin dynamics and is therefore
theoretically well established. We conclude that the silver
blaze problem poses no obstacle for stochastic quantization
and that there is no problem in taking the thermodynamic
limit.

Some insight into why this method works can be ob-
tained by ignoring the interactions (� ¼ 0). In this case, the
complex Langevin equations can be solved analytically
and convergence to the exact results can be proven, pro-
vided that j�j< j�0

cj (¼0:9624 for the parameters used
here). For larger �, the free theory is unstable. As we have
shown here, interactions shift the critical chemical poten-
tial and remove the instability.

Sign problem and phase quenching.—To quantify the
sign problem, we write e�S ¼ e�SR�iSI ¼ je�Sjei’. In re-
weighting, the phase factor ei’ is combined with the ob-
servable while simulations are performed in the phase-
quenched theory, obtained by ignoring the imaginary part

of the action. Expectation values in the full theory are then
reconstructed as hOifull ¼ hOei’ipq=hei’ipq, where the sub-
script pq indicates phase quenched. The average phase
factor hei’ipq is the ratio of two partition functions,

hei’ipq ¼ Zfull=Zpq ¼ e���f, and vanishes exponentially

in the thermodynamic limit � ! 1, when � � 0. Here,
�f is the difference between the free energy densities in
the full and phase-quenched theories.
We have studied the phase-quenched theory numeri-

cally. In this case, real Langevin dynamics can be em-
ployed, using only Eq. (5) with �I

a � 0. In the expres-
sion for the density (12), only the term proportional to
sinh� is preserved. Simulations were carried out using the
same parameters as above. No difference in convergence
properties were found. The density in the phase-quenched
theory is shown in Fig. 3. We observe that the density
increases linearly as soon as � � 0. This is not unex-
pected, since the density is proportional to sinh�.
However, it makes it even more remarkable that in the
full theory, all � dependence precisely cancels. We note
that this is similar to what is expected to occur in phase-
quenched QCD when m
=2<�<mN=3 [27]. Beyond
the critical chemical potential, the density increases rapidly
in the phase-quenched theory as well.
We have also computed the average phase factor in the

phase-quenched theory using real Langevin dynamics. The
results are shown in Fig. 4. For large chemical potential,
the phase factor goes to zero on all lattices, making re-
weighting impossible. For small chemical potential, the
phase factor goes to zero exponentially fast as the four-
volume increases. This is precisely how the average phase
factor is expected to behave [28]. However, we stress again
that in the simulations of the full theory no negative impact
of the sign problem was found.
Summary and outlook.—We have applied stochastic

quantization and complex Langevin dynamics to study
the silver blaze problem in the relativistic Bose gas at finite
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FIG. 2 (color online). Real part of the square of the field
modulus, Rehj�j2i, as a function of �. The inset shows a blowup
at smaller �.
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FIG. 3 (color online). Density in the phase-quenched theory,
hnipq, as a function of �. The inset shows a blowup at smaller �.
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chemical potential, both in the full and the phase-quenched
theory. We found precise agreement with theoretical ex-
pectations, and no obstacles related to the sign problem or
in taking the thermodynamic limit. These results clearly
stimulate the application of this approach to more compli-
cated theories with a sign problem, in particular, QCD at
nonzero baryon density.

In this context, two aspects have to be mentioned. First,
due to the complexification, the Langevin dynamics no
longer takes place in SU(3) but instead in SL(3, C). This
has been discussed in detail in Ref. [23], where first nu-
merical results for QCD with a nonzero density of static
quarks can be found. Second, the inclusion of dynamical
fermions, not discussed in Ref. [23] or above, is relatively
straightforward. After integrating out the fermion fields,
the fermion determinant contributes to the force term for
the gauge fields. This is not different from any conven-
tional algorithm used in lattice QCD simulations, except
that the force is now complex, making necessary the ex-
tension from SU(3) to SL(3,C). For details concerning the
inclusion of fermions in Langevin dynamics, see, e.g.,
Ref. [29]. Work in this direction is currently in progress.

Discussions with I. O. Stamatescu and S. Hands are
greatly appreciated. This work is supported by STFC.
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FIG. 4 (color online). Average phase factor in the phase-
quenched theory, Rehei’ipq, as a function of �, indicating the

severeness of the sign problem in the thermodynamic limit.
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