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Preparing the ground state of a system of interacting classical particles is an NP-hard problem. Thus,

there is in general no better algorithm to solve this problem than exhaustively going through all N

configurations of the system to determine the one with lowest energy, requiring a running time

proportional to N. A quantum computer, if it could be built, could solve this problem in time
ffiffiffiffi
N

p
.

Here, we present a powerful extension of this result to the case of interacting quantum particles,

demonstrating that a quantum computer can prepare the ground state of a quantum system as efficiently

as it does for classical systems.
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The simulation of quantum many-body systems is a
notoriously hard problem in condensed matter physics,
but it could easily be handled by a quantum computer
[1]. There is, however, one catch: while a quantum com-
puter can naturally implement the dynamics of a quantum
system, i.e., solve Schrödinger’s equation, there was until
now no general method to initialize the computer in a
physically relevant state of the simulated system.

For most physical applications, we are interested in the
low-energy eigenstates of the Hamiltonian H because they
describe the most interesting phases of matter, e.g., ferro-
magnetism, superconductivity, quantum Hall effect, and
Bose-Einstein condensation to name a few. Unfortu-
nately, preparing low-energy states is already a very diffi-
cult task even when H describes a classical system.

Indeed, this problem is an archetype of the complexity
class NP. This class contains all decision problems, i.e.,
problems of the form ‘‘Does x satisfy the property L?,’’
such that when the answer is yes, there exists a witness w
that can be used to prove this answer efficiently. More
precisely, for each x there exists a polynomial-size verifi-
cation circuit Vx such that (1) when x 2 L there exists a
witness w that will cause Vx to output 1, and (2) when x =2
L, all witnesses cause Vx to output 0.

Consider for instance a local Ising model Hðf�gÞ ¼P
i<jJij�i�j þP

ihi�i on n spins �i 2 f0; 1g. ‘‘Is there a
spin configuration � of energy less than E?’’ is a problem
in NP. Indeed, when the answer is yes, the configuration �
that achieves this low energy can serve as a witness.
Verifying the answer boils down to computing the energy,
which requires at most n2 operations. Finally, when the
answer is no, there is no configuration that can cause the
verification procedure to accept. Clearly, an algorithm that
solves this problem can be used to determine the ground
state energy with little overhead.

The Ising problem is in fact NP complete, meaning that
it is the hardest problem in the class [2]. Even more
surprising is the fact that approximating the energy of the
system (imbedded not in any finite dimension but on a

sparse interaction graph) with an error that increases with
the system size n is just as hard as the exact case—it is also
NP complete. This is a consequence of a famous theorem
on probabilistically checkable proofs [3,4]. Although some
special cases can be solved efficiently [5–7], there is in
general no better algorithm to solve the Ising problem than
systematically going through all N ¼ 2n spin configura-
tions to determine the one with lowest energy.
In addition to the immediate physical context, finding

ground states provides a very natural setting for studying
combinatorial optimization problems—problems that con-
sist in minimizing an objective functionH (playing the role
of energy) over some configuration space. Optimization
problems play a vital role in almost every branch of sci-
ence, from computer science to statistical physics and
computational biology [8]. Determining a solution by ex-
haustive search is, in general, computationally prohibitive
because the size N of the search space grows exponentially
with the input size. Given the practical importance of
optimization problems, more efficient methods are highly
desirable.
A common strategy to solve optimization problems is

simulated annealing [9]. As its name suggests, this method
imitates the process undergone by a metal that is heated to
a high temperature and then slowly cooled to its configu-
ration of lowest energy. If the cooling process is too fast,
the system can become trapped in a local minimum, result-
ing in a failure of the algorithm. When the cooling is
sufficiently slow, however, thermal fluctuations should
prevent this phenomenon from occurring. Thus, simulated
annealing requires a detailed knowledge of the energy
landscape and therefore cannot be applied to all minimi-
zation problems. It was shown recently that a simulated
annealing algorithm operated on a quantum computer
achieves a quadratic speed-up over classical annealing
[10]. Whether the method can minimize the energy of a
quantum system as efficiently is unknown.
Adiabatic quantum computation is another method to

tackle this class of problems with a quantum computer. The
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adiabatic theorem asserts that a system prepared in the
instantaneous ground state of a Hamiltonian that varies
slowly in time will remain in the ground state. The ground
state of H can thus be prepared by choosing a time-
dependent Hamiltonian with a simple initial ground state
and slowly changing it toH. This algorithm was applied to
randomly generated instances of an NP-complete problem
[11]. The algorithm worked well for the small examples
that could be simulated on a classical computer. It was later
shown [12], however, that the particular interpolation
scheme suggested [11] fails for satisfiability problems,
and the best known upper bound is a running time of N
[12] (polylogarithmic corrections are ignored throughout).
In principle, this technique can also be applied to minimize
the energy of a quantum Hamiltonian, but little is known
about its performances in that case.

Finally, Grover’s algorithm [13] can find the ground

state of a classical system in
ffiffiffiffi
N

p
steps. Given a projector

R and a state c with kRjc ik2 ¼ q > 0, Grover’s algorithm
consists of a sequence of two reflections, I � 2R and I �
2jc ihc j. Repeating this sequence 1=

ffiffiffi
q

p
times has the

effect of projecting c onto the image of R plus a small
correction. The correction can be completely ignored if we
end Grover’s algorithm by a measurement that distin-
guishes R from its orthogonal complement, and start over
when the complement is obtained. This increases the run-
ning time only by a constant factor. Note that the value of q
must be approximately known, and this can be achieved by
quantum counting [14]. Choosing R to be the projector on
H < E and c a uniform superposition of all spin configu-

rations yields, after at most
ffiffiffiffi
N

p
iterations, a state of energy

less than E. The ground state is obtained by ‘‘sweeping’’
the value of E. Although this remains an exponential
scaling, it is significantly faster than a brute force search,
and there are indications that this scaling is optimal [15].

At first sight, it seems like this last technique could be
used to find the ground state of a quantum many-body
system just as well. All that is needed is a method to
implement a projector R onto the low-energy states of
the system, i.e., H <E for some given E. Combining this
method with Grover’s algorithm on an initial random state
would create the desired outcome with high probability. In
fact, it is not necessary to initialize the system in a truly
random state, but instead it can be randomly selected
among all stabilizer states. These have all the essential
properties of random states and, most importantly, can be
prepared with at most n2 operations [16].

Unfortunately, there is no known procedure to imple-
ment the projector on H <E exactly. Using the phase
estimation algorithm [17], however, we can obtain an
approximation of the projector. Recall that the phase esti-
mation can be used to estimate the energy of any local
Hamiltonian with a polynomial small error and failure
probability. To describe this method, it is convenient to
assume that H has been normalized such that kHk< 1=2
and to consider its spectral decomposition, Hjai ¼ ’ajai.

The phase estimation algorithm uses k auxiliary qubits
initially in the state j0ki. These qubits are placed in a
uniform superposition of all bases by Hadamard transform
and are used to control the evolution time of the system,
thereby mapping jai � 1ffiffiffiffi

2k
p P

jjji to jai � j’ai via phase

kickback, where

j’ai ¼ 1ffiffiffiffiffi
2k

p X

j

e�i2�’ajjji: (1)

These are ‘‘momentum’’ states, so the value of ’a can be
estimated via inverse Fourier transform. Hence, we can
implement an approximation R of the projector on H < E
by running the phase estimation algorithm and projecting
the auxiliary qubits onto the subspace of low momentum.
Combining this method with Grover’s algorithm should
thus yield a good approximation of the ground state.
However, a detailed analysis (see Appendix C [18]) of

this ‘‘naive’’ approach reveals a failure. The problem is that
the projector R constructed from phase estimation is only
an approximation of H < E and errors can build up during
the amplification procedure. There are two sources of
errors. First, the quantum computer cannot exactly repro-
duce the dynamics of the many-body system. This is not a
problem, however, since a 1=polyðnÞ accuracy can be
achieved using a Trotter-Suzuki decomposition at a poly-
nomial cost [1], and this error does not build up (see
Appendix A [18] for a detailed proof). We will henceforth
safely ignore this source of error.
Second, the inverse Fourier transform is discrete while

the energies ’a take value from a continuum, producing
unavoidable round-off errors. Even when the energy ’a

associated with jai is well above the acceptance threshold
E, there is a small probability that phase estimation will
diagnose it as being smaller than E. It is these imperfec-
tions that cause the algorithm to fail because they build up
during amplification. Detailed knowledge of the energy
landscape—such as the presence of an energy gap—could
be used to circumvent this effect, but in general the method
will fail.
We will now present our algorithm that works for all

local Hamiltonians. We proceed by making two modifica-
tions to the naive algorithm. A detailed analysis is pre-
sented in Appendix D of Ref. [18]. The first modification is
to run the algorithm backward: we initialize the system
qubits in a random state jc i ¼ P

a�ajai, the auxiliary
qubits in a low momentum state j�i [cf. Eq. (1)], and
execute the inverse of the phase kickback circuit followed
by Hadamard transform. This produces the state

j�i ¼ X

a

�ah’aj�ijai � j0ki þ � � � ; (2)

where the ellipsis represents terms where the auxiliary
qubits are in a state orthogonal to j0ki. The factor
jh’aj�ij is a function of �� ’a peaked at 0 with a width
2�k. Thus, we can use Grover’s algorithm to amplify the
all-zero state of the auxiliary qubits and obtain a state that
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is mostly a superposition of those eigenstates of H with
eigenvalues close to �; i.e., the amplitude of each term in
the superposition gets reweighted by jh’aj�ij. This proce-
dure truly acts as a filter, suppressing the amplitude of
eigenstates outside its bandwidth for benefit of the eigen-
states inside the bandwidth. Moreover, the auxiliary qubits
are systematically returned to j0ki as desired.

Unfortunately, this is still not sufficient for our purpose
because the filter has a heavy tail. There are exponentially
many states with energy outside the bandwidth, so unless
their amplitude is exponentially suppressed, they can sig-
nificantly shift the energy of the state. The filter we have
constructed offers a polynomial suppression; we need a
filter that drops more abruptly outside its bandwidth.

This requires a second modification to the naive algo-
rithm and is realized by repeating the phase estimation �
times, using a total of �k auxiliary qubits. We obtain the
same state � as above [cf. Eq. (2)], except that the factor
h’aj�i is now raised to the �th power. For those ’a that
are within 2�k=

ffiffiffiffi
�

p
of �, this factor is at least 1=2. Thus,

because c is a random stabilizer state, the overlap of �
with the projector Q ¼ In � j0kih0kj�� will typically be
kQj�ik2 � m

2N , where m is the number of eigenstates of H

in the bandwidth of the filter.
Thus, Grover’s algorithm can be used to amplify this

overlap to nearly 1 in a time at most
ffiffiffiffi
N

p
. When the overlap

of the state with the filter is too small, i.e., if kQj�ik2 <
1=N2 say, this step will fail and the algorithm will abort.
Choosing k� log2ð1�Þ and �� n yields, after a successful

application of Grover’s amplification, a superposition of
eigenstates of energy �� � as desired (see Appendix D
[18]). To summarize, this algorithm acts as a filter on the
energy. The position � and width �� 1=polyðnÞ of the
filter are specified by the user. When no eigenstates ofH lie
within the filter’s bandwidth, the algorithm aborts as
desired.

Note that the method can be adapted in a straightforward
way to produce thermal distributions of the system at any
temperature T � 1=polyðnÞ. We could in a first step com-
bine our method with quantum counting [14] to estimate
the density of states DðEÞ ¼ P

a�ð’a � EÞ with a
1=polyðnÞ resolution. We could then choose an energy

scale E at random according to the distribution PðEÞ �
eE=kBTDðEÞ and use our algorithm to prepare a state of
energy close to E. Combined with the random choice of
initial state, this procedure reproduces the statistical prop-
erties of the thermal state.

Analogously to the classical case, determining the
ground state energy of a local quantum many-body system
within accuracy 1=polyðnÞ is a complete problem for the
complexity class known as quantum Merlin and Artur
(QMA) [19]. Whether the problem remains complete
when an extensive error is tolerated is unknown, but would
be a natural quantum extension of the probabilistically
checkable proofs theorem. Indeed, QMA is a natural gen-
eralization of NP: it is defined similarly except that both

the witness and the verification circuit Vx are quantum
mechanical. In addition to the n witness qubits on which
it operates, Vx can also make use of h� polyðnÞ auxiliary
qubits initialized in the state 0 that serve as a scratchpad
during the computation. The output of the verification
procedure is obtained by measuring the first output qubit
of the circuit. Because of the intrinsic randomness of
quantum mechanics, this procedure is probabilistic:
(1) when x 2 L, there exists a witness w that will cause
Vx to output 1 with probability greater than u, and (2) when
x =2 L, all witnesses cause Vx to output 1 with probability
less than v where u� v > 1=polyðnÞ.
The completeness of the local Hamiltonian problem for

the class QMA suggests that our algorithm can be used to
solve all these problems and prepare the relevant witness in

a time
ffiffiffiffiffi
2n

p
. This is not quite right because the mapping to

the local Hamiltonian problem does not preserve the size of
the witness. The algorithm we suggest instead is a small
variation of the previous algorithm, but uses the defining
circuit Vx directly instead of reducing to a local
Hamiltonian.
A good witness for Vx is a nþ h qubit state c with

(1) all h ancillary qubits in the state 0—summarized by
Qjc i ¼ jc i where Q is the projector onto the all-zero
state of the auxiliary qubits—and (2) a probability at least
v of outputting 1 at the verification procedure—summa-
rized by kRjc ik2 � v where R is the projector associated
with the verification procedure Vx. Thus, the tasks of
preparing a good witness boils down to producing a state
that maximizes the overlap with two projectors Q and R.
When ½Q;R� ¼ 0, this task can be accomplished straight-
forwardly with Grover’s algorithm, but additional efforts
are required in the general case. Indeed, if we start, say,
with a random state in the image of Q and amplify the
projector R, we will typically obtain a state that is mostly
supported outside the image of Q, unless ½Q;R� ¼ 0.
The method we propose to solve this problem is a

modification of our algorithm that builds on the work of
Marriott and Watrous [20]. The main modification is to
replace the phase estimation algorithm by the circuit of
Fig. 1. It consists of a sequence of k (odd) alternating
measurements of R and Q whose outcomes are coherently
recorded on k auxiliary qubits initially in the state 0. The
behavior of this circuit on an eigenstate jai of the operator

FIG. 1 (color online). The circuit consists of a sequence of
measurements of R and Q. The results are coherently imprinted
on k auxiliary qubits.
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QRQ with eigenvalue pa can be analyzed using a result of
Jordan [21] (see Appendix B [18]). The state of the k
auxiliary qubits becomes a superposition of all sequences
of 0 and 1, and the amplitude of consecutive distinct out-
comes, i.e., the amplitude associated to each ‘‘switches’’
from 0 to 1 or vice versa, is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pa

p
. Thus, counting the

number of switches in the measurement outcomes allows
us to estimate the eigenvalue pa of the state.

The situation is therefore analogous to phase estimation,
except that the eigenvalue pa is not encoded in a momen-
tum state but in a state with a certain number of switches
between the outcomes 0 and 1. Accordingly, we must
replace the momentum state used in our algorithm by a

state with the right distribution of switches j�i ¼P
j2f0;1gkð ffiffiffiffi

�
p Þk�sðjÞð ffiffiffiffiffiffiffiffiffiffiffiffiffi

1��
p ÞsðjÞð�1Þ‘ðjÞjji, where s de-

notes the number of switches and ‘ the number of pairs
of consecutive 0’s. The bandwidth � is adjusted by set-
ting k ¼ 2�ð1��Þ=�2. One important advantage of this
type of filter state is that it drops very abruptly outside its
bandwidth; jh�jpij is essentially proportional to a normal
distribution centered at p ¼ � and of variance 2�ð1�
�Þ=k2. Thus, there is no need for multiple copies of the
filter state and the rest of the algorithm proceeds as before
(see Appendix E [18] for a detailed analysis).

This more general algorithm does not perform as well as
the algorithm used for local Hamiltonians because it
searches over a larger Hilbert space: the space of the wit-
ness and the scratchpad. This is to be expected since it
makes no assumption about the structure of the verification
procedure Vx. Note however that all known ‘‘natural’’
problems in QMA—e.g., nonidentity check [22], consis-
tency of quantum states [23], N representability [24], and
zero-error capacity of quantum channels [25]—use a
scratchpad of only logarithmic size, so in those cases the
running time is the same as for local Hamiltonians. It is
tempting to conjecture that the scratchpad of all problems
in QMA can be reduced to this size.

To summarize, we have presented a method to prepare
ground and thermal states of quantum many-body systems
on a quantum computer. The time required by our algo-
rithm is equal to the square root of the Hilbert space
dimension of the system—the same time required to pre-
pare the ground state of a classical many-body system. This
represents a quadratic speed-up and an exponential mem-
ory reduction over Lanczos method, which in general is the
most efficient available technique to accomplish this task
on a classical computer. It is perhaps surprising that this
task cannot be accomplished by a straightforward combi-
nation of phase estimation and Grover’s algorithm, but our
analysis of this strategy reveals an important failure, and
more elaborate methods were required. A quantum com-
puter, if it could be built, could serve as an efficient
simulator of quantum many-body systems. The method
we have presented would complement this simulation by
initializing the computer in a low-energy state of the
simulated system.

With some modifications, our algorithm can be used to
solve and prepare relevant witnesses of all problems in the
complexity class QMA, the quantum generalization ofNP.
In that case, the physical task consists of preparing a state
that has a large overlap with two projectors. Problems in
NP form a special case where those projectors commute
and can be solved straightforwardly using Grover’s algo-
rithm. However, in the general case the projectors do not
commute and more sophisticated techniques were
required.
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