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Directed acyclic graphs make up a fundamental class of networks that includes citation networks, food

webs, and family trees, among others. Here we define a random graph model for directed acyclic graphs

and give solutions for a number of the model’s properties, including connection probabilities and

component sizes, as well as a fast algorithm for simulating the model on a computer. We compare the

predictions of the model to a real-world network of citations between physics papers and find surprisingly

good agreement, suggesting that the structure of the real network may be quite well described by the

random graph.
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Many networks of scientific interest take the form of
directed acyclic graphs—directed networks containing no
closed cycles, i.e., paths that start and end at the same
vertex and follow edges only in the forward direction [1].
The best known examples are citation networks [2], but
there are many others as well, such as family trees, phylo-
genetic networks, food webs, and feed-forward neural net-
works. (Some of these are only approximately acyclic, but
the approximation is typically good enough that acyclic
graphs still provide a useful starting point for theories of
network structure.)

One of the most fundamental and important of theoreti-
cal models in the study of networks is the random graph. In
its most general form, a random graph is a model network
of a given number of vertices in which certain topological
features are fixed but in all other respects edges are placed
at random [3–7]. Random graphs have significant advan-
tages as models of networks, allowing one to isolate the
effects of particular structural parameters and being ex-
actly solvable for many of their topological properties,
both local and global. They have played a central role in
the development of network theory, proving useful as a
guide to both the qualitative and the quantitative properties
of networks of many kinds.

In this Letter, we present a random graph model for
directed acyclic graphs. Despite the name ‘‘acyclic graph,’’
the lack of cycles is in fact not the defining feature of most
real-world acyclic graphs. The defining feature is that the
vertices have a natural ordering. In a citation network of
scientific papers, for instance, the papers are time ordered
by publication date, and the network is acyclic because
papers can only cite those that came before them, meaning
that all edges point backward in time. (Note that self-edges
are not allowed in acyclic graphs.) It is clear that all net-
works ordered in this way are acyclic, and it can be proved
that for all acyclic networks at least one appropriate order-
ing of the vertices exists. In practical situations, however,
the ordering is normally the crucial property, and it will be
the defining feature for the models described in this Letter.

Suppose then that we are given an ordered set of n
vertices denoted by i ¼ 1 . . . n and a corresponding degree
sequence, i.e., a complete set of in- and out-degrees kini and
kouti for all vertices. In our representation all edges will
point from ‘‘later’’ vertices (higher i) to ‘‘earlier’’ ones
(lower i) as in a citation network. (Although we use the
language of time in this Letter, the ordering does not have
to be a time ordering. In a food web, for example, the
ordering represents trophic level.)
It is not possible to construct an acyclic network on

every degree sequence. Degree sequences, for instance,
in which the first vertex has any outgoing edges (kout1 >
0) will not work because there are no earlier vertices for
those edges to attach to. More generally, all edges outgoing
from vertices 1 to imust attach at their other end to vertices
in the range 1 to i� 1, and hence a necessary condition on
the degree sequence is

P
i�1
j¼1 k

in
j � P

i
j¼1 k

out
j for all i, with

the inequality becoming an equality for i ¼ 1 and i ¼ n.
Defining the useful quantity

�i ¼
Xi�1

j¼1

kinj � Xi
j¼1

koutj ; (1)

this condition can also be written as �i � 0 for i ¼
2 . . . n� 1 and �1 ¼ �n ¼ 0. It is straightforward to prove
that this is also a sufficient condition for a degree sequence
to be realizable as a network. Physically, �i represents the
number of edges that go around vertex i, meaning the
number that connects vertices later than i to vertices earlier
than i.
We can visualize the degree sequence as a set of edge

‘‘stubs,’’ outgoing and ingoing, attached in the appropriate
numbers to each vertex. Our job is to match these stubs in
pairs to create directed edges. Our definition of a random
graph for directed acyclic networks is analogous to that of
the standard ‘‘configuration model’’ for undirected net-
works [5–7]: it is the graph generated by drawing uni-
formly at random from all allowed matchings of the
stubs, where ‘‘allowed’’ in this case means matchings
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that respect the ordering of the vertices. More correctly it is
the ensemble of such matchings in which each matching
appears with equal probability. Note that, as in other ran-
dom graph models, multiedges are allowed, although in
general they constitute a fraction only Oð1=nÞ of all edges
and hence are usually negligible.

An attractive feature of this model is that there turns out
to be a simple and efficient algorithm for generating the
networks. Previous numerical schemes for generating acy-
clic graphs have relied on Monte Carlo techniques [8,9],
which are effective but slow. Our model, by contrast,
allows a simple constructive algorithm: starting with no
edges in our network, we go through each vertex in time
order and attach each outgoing stub to an ingoing stub at an
earlier vertex, chosen uniformly at random from the set of
such stubs that are currently unattached. With a suitable
choice of data structures this algorithm runs in time of
order the number of edges in the network. In practice, we
can easily generate networks of up to a few billion vertices
in reasonable running times.

It may not be immediately clear that this algorithm
generates networks with the same probabilities as the
model defined above, but it is easily proved. Consider the
step of the algorithm in which we choose the destinations
of the kouti outgoing stubs at vertex i. At the start of this
step, the number of unused ingoing stubs at earlier vertices
is

P
i�1
j¼1 k

in
j �P

i�1
j¼1 k

out
j ¼ �i þ kouti , and the number of

distinct matchings of i’s outgoing stubs to these ingoing
ones is Ni ¼ ð�i þ kouti Þ!=�i!, each of which has the same
probability 1=Ni of being chosen. Thus the total probabil-
ity of generating a specific matching for the whole network
is
Q

n
i¼2ð1=NiÞ, which is clearly uniform over all matchings,

as required, since it depends only on the degree sequence
and not on the matching itself.

Having defined our model and a method for drawing
from its ensemble, we turn to the calculation of its prop-
erties. Our first goal is to find one of the most fundamental
of network quantities, the probability of connection be-
tween a given pair of vertices, or more correctly the
expected number of edges between them. Let us define
fij to be the probability of connection between a given in-

stub at vertex i and a given out-stub at vertex j, multiplied
by the total number m of edges in the network. The stub
connection probability is equal to the number of complete
matchings in which these particular stubs are connected
divided by the total number of matchings. Assuming i < j,
this gives

fij ¼ m

Qj�1
l¼iþ1 �lQj

l¼iþ1ð�l þ koutl Þ : (2)

Then the expected number Pij of edges between i and j is

Pij ¼
kini k

out
j

m
fij: (3)

Note that in an ordinary (cyclic) directed random graph the

expected number of edges between two vertices is
kini k

out
j =m and hence fij is the factor by which that number

is modified in our acyclic model.
By suitable manipulation, Eq. (2) can be rewritten as a

product of independent functions of i and j: fij ¼ f1naibj,

with a1 ¼ bn ¼ 1 and

ai ¼
Yi
l¼2

�
1þ koutl

�l

�
; bj ¼

Yn�1

l¼j

�
1þ kinl

�l

�
(4)

for all other i, j. This reduces the calculation of Pij to the

calculation of just OðnÞ quantities, and for numerical pur-
poses this is the quickest way to evaluate Pij. Equation (4)

also has the virtue of being manifestly symmetric with
respect to in- and out-degrees [by contrast with Eq. (2)].
As a demonstration of the application of the model, we

show in Fig. 1 a comparison of our theoretical predictions
for fij with measured values for a citation network con-

sisting of n ¼ 27 221 physics papers on high-energy theory
posted on the physics e-print archive at arxiv.org between
1992 and 2003. We study fij rather than Pij since the latter

is strongly dependent on the degrees of individual vertices,
via Eq. (3), making it a noisy function of its indices. By
contrast, fij has only a weak dependence on individual

degrees and is relatively smooth. We estimate fij for the

observed network by counting the number of edges run-
ning between two windows of width 200 vertices centered
on i and j, dividing by the number of in-stubs in the first
window and out-stubs in the second, and multiplying bym.
As the figure shows, theory and observation are in

remarkably good agreement in this case, indicating that
the edge probabilities are, at least on average, not far from
those of the random graph. A normal (not acyclic) random
directed graph [7], sometimes used as a crude model for
acyclic networks, would have fij ¼ 1 for all i, j—a per-
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FIG. 1 (color online). Comparison of empirical measurements
(jagged lines) and analytic predictions (curves) of fij for the

citation network described in the text. The ‘‘time’’ of paper i is
defined to be t ¼ i=n. Left: fij for citations to papers at time 0.1

(dotted line) from later times t. Right: fij for citations from

papers at time 0.9 to earlier times t.

PRL 102, 128701 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

27 MARCH 2009

128701-2



fectly horizontal line in the figure—which would be en-
tirely incompatible with the observations. (Other models,
particularly preferential attachment models [10,11], make
quite good models of citation networks, but our model is
more general, being applicable also to many other acyclic
networks for which preferential attachment is not a good
match.)

To make further progress it is convenient to consider, as
with other random graph models, the behavior of the model
in the limit of large network size. Let us define a ‘‘time’’
variable t 2 ð0; 1� such that the time of vertex i is t ¼ i=n,
and let �inðtÞ and �outðtÞ be the densities of ingoing and
outgoing edges over time, meaning that �inðtÞdt is the
fraction of ingoing edges in the interval t to tþ dt, and
similarly for �outðtÞ. By analogy with earlier developments
we also define

�ðtÞ ¼
Z t

0
½�inðt0Þ � �outðt0Þ�dt0; (5)

and we define fðt; uÞ to be m times the probability that an
in-stub at time t is connected to an out-stub at time u. Then,
taking n ! 1 in Eq. (4) and assuming that �i is large
compared to individual degrees, we find that fðt; uÞ ¼
fð0; 1ÞaðtÞbðuÞ, where

aðtÞ¼ exp

�Z t

0

�outðt0Þ
�ðt0Þ dt0

�
; bðuÞ¼ exp

�Z 1

u

�inðu0Þ
�ðu0Þ du

0
�
:

(6)

Since every out-stub must connect to some in-stub,
fðt; uÞ must also satisfy the normalization conditionR
u
0 �

inðtÞfðt; uÞdt ¼ 1. Substituting for fðt; uÞ from above

and setting u ¼ 1 then gives

fð0; 1Þ ¼
�Z 1

0
�inðtÞaðtÞdt

��1
; (7)

which allows us to determine the overall normalization of
fðt; uÞ. If we wish we can also translate these results back
into the language of individual vertices and write the
probability of connection between vertices i and j as Pij ¼
kini k

out
j fði=n; j=nÞ=m.

As an example, consider a random acyclic graph with

�inðtÞ ¼ 2ð1� tÞ; �outðuÞ ¼ 2u: (8)

Using the formulas above, we then find that

fðt; uÞ ¼ 1

2ð1� tÞu : (9)

Note that this diverges at t ¼ 1 and u ¼ 0, as it should: the
probability of connection between an out-stub at time u
and an earlier in-stub becomes large when u approaches
zero because the number of earlier in-stubs is small (and
similarly when t is large).

The probability of connection between vertices on the
other hand does not diverge. Multiplying (9) by kini k

out
j =m

with i ¼ nt, j ¼ nu, averaging over the distributions of the

degrees, and noting that the average in- and out-degrees at
time t are c�inðtÞ and c�outðtÞ where c ¼ m=n is the
average degree (in or out) of the network as a whole, we get

Pij ¼ c�inðtÞc�outðuÞ
m

fðt; uÞ ¼ 2cð1� tÞ � 2cu

2mð1� tÞu ¼ 2c

n
;

(10)

which is constant. Thus all pairs of vertices are equally
likely to be connected. In fact, this case is closely related to
the so-called cascade model, an acyclic graph model used
in the study of food webs [12]. The cascade model also has
constant probabilities of connection between vertices, and
moreover it can be shown that all networks with a given
degree sequence appear with the same probability in the
cascade model, so that the set of such networks is a random
acyclic graph in our sense [13].
As another example consider the widely studied class of

networks generated by linear preferential attachment pro-
cesses [10,11,14,15]. Because of the inherent time ordering
of their vertices, these processes generate directed acyclic
graphs and are commonly used as a simple model for
citation networks among other things [11].
For a preferential attachment model in which each ver-

tex created has out-degree c and attachment is proportional
to kini þ r with c and r constant, the mean in-degree as a

function of time is rðt�c=ðcþrÞ � 1Þ [14,15]. Consider a
random acyclic graph with the same in- and out-degrees.
Using the formulas above, we find that

fðt; uÞ ¼ 1

ð1þ r=cÞð1� tc=ðcþrÞÞur=ðcþrÞ ; (11)

which again diverges at t ¼ 1 and u ¼ 0. The average
probability of connection between vertices i and j is then

Pij ¼ cr

cþ r
i�c=ðcþrÞj�r=ðcþrÞ: (12)

Remarkably, this is precisely the connection probability for
the original preferential attachment model itself [15].
Indeed it can be shown, as with the cascade model, that
networks with a given degree sequence occur with uniform
probability in the preferential attachment model, and hence
form a random acyclic graph according to our definition of
the term. It is sometimes claimed that graphs generated by
the preferential attachment process are not truly random,
since they contain correlations of various kinds [14]. Our
results indicate, however, that, when one correctly ac-
counts for the time ordering of the vertices, the preferential
attachment model is in fact simply a random graph.
There are many other properties that can be computed

for our model. Consider, for example, the number of paths
between vertices in the network. Let Dij be the expected

number of directed paths from j to i. Since every such path
consists either of just a single edge from j to i or of a path
from j to some intermediate vertex v and then an edge
from v to i, we can write
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Dij ¼ Pij þ
Xj�1

v¼iþ1

PivDvj: (13)

After some computation, we then find that

Dij ¼ Pij

Yj�1

v¼iþ1

�
1þ kinv k

out
v

�v

�
: (14)

WhenDij is small, so that the probability of having more

than one path is negligible, Dij can be treated as the

probability that a path exists. Within this ‘‘treelike’’ re-
gime, we can compute various quantities of interest starting
from the expression for Dij. For instance, let sj be the

average size of the out-component reachable from vertex
j—the total number of papers cited directly or indirectly by

j in the language of citation networks. Then sj ¼
1þPj�1

i¼1 Dij, which can be evaluated explicitly in the

large graph size limit. For the case of a cascade-type model
obeying Eq. (8), for example, this expression gives sðtÞ ¼
e2ct, increasing exponentially with time and largest for the
last vertex in the network. The treelike assumption breaks
down if Dij > Oð1=nÞ or equivalently if the sizes of out-

components approach the size of the entire network. For
the cascade model this happens if e2c � n, or equivalently
c� 1

2 lnn. Hence this breakdown is effectively a finite-size

effect—in the limit of large n it is never observed. For other

choices of degrees, however, the assumption of treelike
components can break down even in the large n limit. The
preferential-attachment-type network is an example of
this; here the assumption breaks down at c ¼ 1. Figure 2
shows a comparison of simulations and theory for both
cases as a function of c. Agreement is excellent until we
approach the expected breakdown point, at which simula-
tion and theory diverge significantly.
In conclusion, we have proposed a random graph model

for directed acyclic graphs, a large and important class that
describes many real-world networks. We have defined the
model for arbitrary degree sequences, given a fast algo-
rithm for generating networks drawn from the model, and
shown that a variety of the model’s properties can be
calculated exactly, both at finite sizes and in the limit of
large network size. Just as ordinary undirected and directed
random graphs have played many roles in the development
of network theory, so the acyclic equivalent should prove
useful in the study of acyclic networks, providing an
analytically tractable model for structural network proper-
ties, a starting point for more complex analytic or numeri-
cal models, a null model for statistical comparisons, and,
we hope, other applications not yet envisioned.
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FIG. 2 (color online). Expected size of the out-component for
the last (t ¼ 1) vertex in a graph, measured as a fraction of
system size. Solid lines represent the theoretical predictions.
Points represent numerical results, averaged over 8000 graphs.
Top: networks with the degree distribution of the cascade model.
Inset: an enlargement of the leftmost portion of the curve,
showing the agreement between theory and simulation in this
region. Bottom: networks with the degree distribution of the
preferential attachment model with r ¼ 1

2 c.
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