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We study the nonequilibrium dynamics of the quantum Ising model following an abrupt quench of the

transverse field. We focus on the on-site autocorrelation function of the order parameter, and extract the

phase-coherence time �’Q from its asymptotic behavior. We show that the initial state determines �’Q only

through an effective temperature set by its energy and the final Hamiltonian. Moreover, we observe that

the dependence of �’Q on the effective temperature fairly agrees with that obtained in thermal equilibrium

as a function of the equilibrium temperature.
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A recent series of beautiful experiments with cold
atomic gases [1–3] have triggered a great deal of interest
in some fundamental aspects of the nonequilibrium dy-
namics of correlated quantum systems. The peculiarity of
the dynamics of cold atoms is its phase coherence on long
time scales. This was clearly demonstrated by the cycles of
collapse and revival of the order parameter observed in
Ref. [2]. The interplay between phase coherence, strong
interactions, and low dimensionality may result in surpris-
ing effects: an example is the lack of thermalization re-
cently observed in quasi-one-dimensional condensates [3].
The attribution of this phenomenon to the closeness of
these systems to integrability spurred an intense discussion
on the general relation between quantum integrability and
thermalization in the long-time dynamics of strongly cor-
related quantum systems [4–15].

The simplest nonequilibrium process to be considered in
order to study the long-time dynamics of a quantum system
is the quantum quench: an abrupt change in time of one of
the system parameters or of its boundary conditions.
Recent studies of strongly correlated models [4–15] have
demonstrated that the behavior of integrable and nonintegr-
able systems can be quite different. Thermalization can be
observed, under specific circumstances, in nonintegrable
systems [8–10]: asymptotic values of significant observ-
ables, such as the momentum distribution function, do not
depend on the details of the initial state, but only on its
energy [8]. On the other hand, for integrable systems
thermalization does not occur [5–7,11–15]: a larger
amount of information on the initial state seems necessary
to predict the asymptotic state. It has been conjectured that
this information consists of the expectation value of a set of
constants of motion fixing in the Lagrange multipliers of a
generalized Gibbs ensemble [7]. For a special quench in a
1D Bose-Hubbard model [11] and for integrable systems
with free quasiparticles [12], the local reduced density
matrix was indeed proven to asymptotically tend to such
a generalized ensemble. Moreover, the generalized Gibbs

ensemble was shown to correctly predict the asymptotic
momentum distribution functions for a variety of models
and quenches [6,7,13,14]. However, it should be pointed
out that neglection of correlations of the occupation of
different quasiparticle modes leads to incorrect predictions
for the noise and higher order correlators [15].
In this Letter, instead of focusing on the asymptotics of

observables, we take a different perspective, and study the
dependence on the initial state jc 0i of the intrinsic time
scale of the dynamics after the quench. We do this by
considering the quantum Ising chain, a prototypical ex-
ample of an exactly solvable model with a quantum phase
transition [16]. We study the autocorrelation function of
the order parameter after a quench of the transverse field,
extracting the phase-coherence time �’Q from its asymp-

totic exponential decay. We will show that, regardless of
the integrability of the model, the only information on the
quench needed to predict �’Q is the final gap � and an

effective temperature Teff , determined by the energy of the
initial state after the quench; moreover, the dependence of
�’Q on Teff is in very good agreement with that obtained, at

equilibrium, for the same quantity �’T as a function of the
equilibrium temperature T.
The sharp contrast between the asymptotics of observ-

ables like the transverse magnetization, determined by the
entire set of constants of motion, and the phase-coherence
time �’Q, depending just on Teff , has its deep roots in the

physics of the quantum Ising chain [16]. This model, which
can be diagonalized in the continuum limit in terms of
Majorana fermion quasiparticles (see, e.g. [17]), possesses
two sectors of operators [18]: a local sector with respect to
the quasiparticles, where the S-matrix is simply S ¼ 1 and
the model is equivalent to a free theory, and a nonlocal
sector, where S ¼ �1 and the model describes an interact-
ing theory. In this respect, the nonlocal sector can be used
as a low-energy theory of a more general class of models,
not necessarily integrable, belonging to the Ising universal-
ity class (e.g., the nonintegrable �4 Landau-Ginzburg
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model [19]). While the transverse magnetization belongs
to the local sector, implying sensitivity of its asymptotics to
integrability, the order parameter belongs to the nonlocal
sector, making �’Q representative of the Ising universality

class.
We start by considering a spin-1=2 quantum Ising chain

in a transverse magnetic field � with periodic boundary
conditions:

H ð�Þ ¼ �J
X

j

½�x
j�

x
jþ1 þ ��z

j�; (1)

where ��
j (� ¼ x, y, z) are spin operators, J is the inter-

action strength. Hereafter, unless explicitly written, we set
J ¼ 1. This system has a quantum critical point at �c ¼ 1
separating two mutually dual gapped phases, a quantum
paramagnetic one (�> 1) and a ferromagnetic one (�<
1), with energy gap � � 2j1� �j. At equilibrium, the
presence of a critical point dramatically influences the
temperature dependence of the basic time scale character-
izing the system’s dynamics: the phase-coherence time �’T
[16]. The latter is usually extracted from the asymptotics of
the on-site spin autocorrelation function �xx

T ðtÞ �
h�x

jðtÞ�x
jð0Þi, which decays to zero exponentially, [20,21]

�xx
T ðtÞ � e�t=�’T , at any finite temperature T > 0, both at

criticality (� ¼ 0), and in the off-critical region (T � �).
At criticality [20], for T � J one finds �’T ’ 8

�T , while �
’
T

is exponentially larger [21,22] in the off-critical region

with T � �: �’T ’ �
2T e

�=T .

Consider now a quantum quench, which consists of
preparing the system in the ground state corresponding to
a transverse field �0, jc 0i ¼ jc ð�0Þi, and then abruptly
quenching it, at t ¼ 0, to some � � �0. For t > 0, the state
evolves unitarily under H ð�Þ, according to jc ti ¼
exp½�iH ð�Þt�jc ð�0Þi. We define the zero-temperature
on-site autocorrelation function describing the spin dy-
namics after the quench:

�xx
Q ðtÞ � hc ð�0ÞjeiH ð�Þt�x

je
�iH ð�Þt�x

j jc ð�0Þi: (2)

Before entering into details, we summarize the results
obtained by analyzing the asymptotics of �xx

Q ðtÞ: it always
drops exponentially to zero (see Fig. 1), �xx

Q ðtÞ � e�t=�’
Q , as

in the finite-temperature equilibrium case, consistent with
what was obtained in Ref. [6] for critical quenches. This
allows us to extract a time scale �’Q characterizing the

dynamics after the quench. This phase-coherence time
depends in principle on the initial state jc ð�0Þi and the
final Hamiltonian H ð�Þ. However, and this is the main
result of this Letter, all the information needed to charac-
terize �’Q is encoded in two variables only: the final gap

�ð�Þ, and an effective temperature Teff . The latter is ob-
tained by comparing the energy associated to the initial
state with respect to the Hamiltonian after the quench to the
average energy of a fictitious thermal state at temperature
Teff in an effective canonical ensemble:

Eð�0Þ � hc ð�0ÞjH ð�Þjc ð�0Þi ¼ hH ð�ÞiTeff
: (3)

Most importantly, we find that �’Q ¼ �’T¼Teff
, both for

quenches at criticality and away from it.
To calculate �xx

Q ðtÞ we exploit the complete integrability

of the Ising chain [23,24]. Here we sketch the essential
steps [25]: first, one represents spins in terms of Jordan-
Wigner fermions cl � ��

l expði�P
l�1
j¼1 �

þ
j �

�
j Þ. Since the

ground state always has an even number of fermions, one
can focus on the even c-fermionic Hilbert space sector.
Switching to momentum representation, the Hamiltonian is

diagonalized with a Bogoliubov rotation: H ð�Þ ¼P
k>0�

�
k ð�y

k �k þ �y
�k��k � 1Þ, where �k are fermionic

quasiparticle operators, ��k ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 2� coskþ 1

p
is their

dispersion, and k ¼ � �ð2nþ1Þ
L with n ¼ 0; . . . ; L2 � 1. The

second step consists of describing the dynamics after a
quench. This can be easily done in the Heisenberg picture
[26], by solving the closed set of equations of motion for
the c fermions in momentum space, with the initial con-
ditions associated to the quench. Finally, �xx

Q ðtÞ is com-

puted using a trick developed in Ref. [25]. The operator
�x

jðtÞ�x
jð0Þ connects states with different c-fermion parity,

and it cannot be simply evaluated using Jordan-Wigner
fermions in the even Hamiltonian sector. This problem
can be circumvented by considering a four-spin correla-
tion function on a chain of length L, Cxðt;LÞ ¼
h�x

1ðtÞ�x
1ð0Þ�x

ðL=2Þþ1ðtÞ�x
ðL=2Þþ1ð0Þi. This correlator con-

serves the c-fermion parity, and can be written as the
square root of a Pfaffian [25], using the techniques of
Ref. [23]. One finally recovers �xx

Q ðtÞ using the cluster

property ½�xx
Q ðtÞ�2 ¼ limL!1Cxðt;LÞ, by taking the square

root of CxðtÞ in the limit of the large number of spins.
As anticipated above, the zero-temperature quench

autocorrelation �xx
Q ðtÞ always relaxes exponentially to
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FIG. 1 (color online). Time dependence of j�xx
Q ðtÞj for a

quench to a final ferromagnet � ¼ 0:5. Different curves, ob-
tained numerically for a finite chain of L ¼ 600 sites, correspond
to different initial �0’s. Inset: j�xx

Q ðtÞj ffiffi
t

p
for � ¼ 1:25.
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zero (see Fig. 1), irrespective of the initial state jc ð�0Þi
and of the final transverse field � � �0: �

xx
Q ðtÞ � e�t=�’

Q .

This is in sharp contrast to the zero-temperature equilib-
rium autocorrelation �xx

T¼0ðtÞ, which decays as M2
x þ C=t

for �< 1, Mx ¼ ð1� �2Þ1=8 being the spontaneous mag-
netization [25]. Quenching to the paramagnetic side, the
exponential drop is superimposed to an oscillatory power-
law decay. This is once again reminiscent of the finite-

temperature equilibrium case, where �xx
T ðtÞ � KðtÞe�t=�’T ,

KðtÞ being the quantum zero-temperature correlator [21],

which oscillates and decays as t�1=2. Indeed, for a quench
to �> 1, rescaling �xx

Q ðtÞ with the zero-temperature factor

t�1=2, we recover exponential relaxation (inset of Fig. 1).
We now analyze the coherence time as a function of

different initial and final conditions. In Fig. 2, �’Q is plotted

as a function of initial �0, for several final �’s. A dramatic
increase of �’Q as �0 ! � is observed: the less the system

goes out-of-equilibrium, the slower is the relaxation. If
�0 ¼ �, the exponential decay turns into a power law, as
in the zero-temperature equilibrium case, and �’Q ! 1.

The analogy with the equilibrium finite-temperature be-
havior, where the lower is the temperature T the longer is
�’T , is evident. It is therefore tempting to relate the two
cases, by introducing an effective temperature Teff for the
out-of-equilibrium system. We define Teff by comparing
the energy of the initial state jc ð�0Þi with that of a ficti-
tious thermal state as in Eq. (3), with a thermal energy
hH ð�ÞiTeff

¼ P
k>0�

�
k ½nkðTeffÞ þ n�kðTeffÞ � 1� deter-

mined by an effective canonical ensemble Fermi distri-

bution function nkðTeffÞ ¼ ð1þ e�
�
k
=Teff Þ�1 of the quasi-

particles �k. A plot of Teff as a function of �0, for different
values of �, is shown in the inset of Fig. 2. Notice that, for

each �, there are two values of �0 for which Teff is the
same, one for �0 < � and one for �0 > �.
The effective temperature Teff , together with the quasi-

particle gap � at the final �, univocally determines the
phase-coherence time �’Q. Numerical evidence is shown in

Fig. 3: points with equal�ð�Þ have the same �’Q if effective

temperatures are the same, even if �0 and � are different.
Since the system is closed, it would be tempting to sub-
stitute Teff with just the initial energy Eð�0Þ. This is not
always possible. Indeed, two quenches having different
initial energy Eð�0Þ, but equal final gap �ð�Þ and equal
Teff , will exhibit the same �’Q (see data for � ¼ 1:25 and

0.75 in Fig. 3). For example, the two quenches 1:21 ! 1:25
and 0:715 ! 0:75 have equal Teff ’ 0:113 within 0.7%,
(corresponding to �’Q ’ 1170 within 0.3%), although their

energies differ by 25%. However, if the final � is fixed, the
canonical and microcanonical effective ensembles are
equivalent; i.e., Eð�0Þ and Teff can be interchanged. We
also notice that, with good accuracy, �’Q is still given by the

equilibrium expressions at temperature Teff , i.e., �’Q ’
�’T¼Teff

out of criticality. In the critical case, a tendency to

follow the equilibrium expressions is observed only at low
temperatures, using a finite-size scaling (see inset of
Fig. 3). This is necessary because, while the comparison
is expected to work better at low Teff , the consequent
importance of the long wavelength modes makes finite-
size effects more pronounced.
The time dependence of correlators is influenced by

quasiparticle propagation, as exemplarily shown in a
series of studies [4–6] focusing on the asymptotics of equal
time correlators at different space points, �xxðr; tÞ ¼
h�x

iþrðtÞ�x
i ðtÞi. A similar picture, elucidating some of the
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results so far obtained and applicable in the off-critical
regimes (Teff � �), can be formulated in the spirit of
Ref. [21]. When the transverse field is quenched, the initial
condition for the time evolution consists of a state with a
finite density of quasiparticles (relative to H ð�Þ), charac-
terized by a dispersion ��k . For �< 1, these can be seen as

kinks propagating with momentum k and velocity vk ¼
@��k =@k. The correlator �

xx
Q ðtÞ is determined by the number

of kinks passing through a single site in the interval ½0; t�. A
combinatorial analysis [21], together with an average over
momenta, leads to �xx

Q ðtÞ ’ exp½�t=~�’Q�, with ð~�’QÞ�1 ¼
2
L

P
kjvkjfk, where fk ¼ hc 0j�y

k �kjc 0i is the occupation

of quasiparticle modes. Analogous arguments can be pre-
sented for �> 1, giving �xx

Q ðtÞ ’ KðtÞ expð�t=~�’QÞ, where
KðtÞ � t�1=2 is the equilibrium zero-temperature correla-
tor. Note that here integrability is not necessary: the same
reasoning applies to the low-energy kink of the nonintegr-
able �4 theory that belongs to the same Ising universality
class. While this picture explains the exponential decay
towards zero, it is also important to notice the following:
although the quasiparticle distribution function fk deter-
mined by the initial state and the effective thermal quasi-
particle distribution function nkðTeffÞ are typically very
different, phase-coherence times ~�’Q computed from fk or

according to ð~�’T Þ�1 ¼ 2
L

P
kjvkjnkðTeffÞ are very close (see

Fig. 4). In other words, we explicitly checked that, fixing
an effective temperature through Eq. (3) or using ~�’Q ¼ ~�’T ,

leads to qualitatively and quantitatively similar (to a few
percent accuracy) results, for � � Teff ; moreover, by im-
posing ~�’Q ¼ ~�’T , we find ~Teff � 2�= ln½�=ð�� �0Þ2� far
from criticality and at low temperatures, in agreement with
the cusp singularity of Fig. 2.

In conclusion, we studied the phase-coherence time �’Q
after an abrupt quench of the transverse field in a quantum

Ising chain. We have shown that, irrespective of the inte-
grability of the model, �’Q depends only on the quasipar-

ticle gap� and the quasiparticle effective temperature Teff ,
and we have provided numerical evidence of the fact that
the dependence of �’Q on Teff is close to the one obtained at

equilibrium as a function of the equilibrium temperature.
The realization of the dynamics of artificial quantum spin
chains using bosonic atoms in optical lattices [27] repre-
sents a concrete possibility to check our theoretical sce-
nario with the available experimental tools.
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