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We consider the zero temperature behavior of dynamic response functions of 1D systems near edges of

support in the momentum-energy plane ðk;!Þ. The description of the singularities of dynamic response

functions near an edge "ðkÞ is given by the effective Hamiltonian of a mobile impurity moving in a

Luttinger liquid. For Galilean-invariant systems, we relate the parameters of such an effective

Hamiltonian to the properties of the function "ðkÞ. This allows us to express the exponents which

characterize singular response functions of spinless bosonic or fermionic liquids in terms of "ðkÞ and
Luttinger liquid parameters for any k. For an antiferromagnetic Heisenberg spin-1=2 chain in a zero

magnetic field, SUð2Þ invariance fixes the exponents from purely phenomenological considerations.
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One of the central problems in condensed matter theory
is the development of an effective phenomenological de-
scription of complicated many-body systems, the micro-
scopic details of which are often not known. The
description of low energy properties of interacting elec-
trons in normal metals, for example, is provided by the
theory of Fermi liquid [1], while in one-dimensional sys-
tems Luttinger liquid (LL) theory [2–4] plays a similar
role. These phenomenological theories do not rely on
specific microscopic details, but predict certain low energy
properties of many-body systems in terms of few measur-
able parameters. For example, LL theory assumes a linear
spectrum of low energy excitations and relates long-range
behavior of correlation functions to the dimensionless LL
parameter K. However, the linear spectrum approximation
is not sufficient for finding dynamic response functions
(DRFs) even in the low energy limit [5]. In this Letter we
show that for a wide class of 1D systems one can phenom-
enologically predict certain properties of DRFs in terms of
other measurable quantities even beyond the low energy
limit.

The nonlinearity of the excitation spectrum affects
transport phenomena, such as Coulomb drag [6] and
momentum-resolved tunneling of electrons [7] between
quantum wires. In addition, neutron scattering on spin
chains [8], angle-resolved photoemission spectroscopy on
quasi-1D materials [9], and photoemission spectroscopy
[10] of 1D ultracold atomic gases directly measure DRFs,
and are not limited to low energies. Evaluation of DRFs of
1D quantum systems with generic excitation spectrum is
also a test bed for rapidly developing methods of numerical
simulations of many-body dynamics [11,12]. Recently
some progress was achieved in the analytical treatment
of correlation functions beyond linear spectrum approxi-
mation [5,12–23]. The majority of analytical work, how-
ever, relied on solutions of microscopic models, using
perturbation theory methods [13,14], or integra-
bility of models with specially tuned parameters [12,15–

21]. In contrast, the phenomenology developed in this
Letter does not require any special property of the under-
lying microscopic interaction, while it provides relations
between different experimentally observable quantities,
such as the energy spectrum and the exponents of DRF
singularities; see Eqs. (9) and (12).
For spinless fermionic Galilean-invariant systems, the

DRFs have a sharp edge of support "ðkÞ in the thermody-
namic limit at T ¼ 0; see Fig. 1. The Hamiltonian describ-
ing singularities of DRFs, such as dynamic structure factor
(DSF) Sðp;!Þ and spectral function Aðp;!Þ [defined be-
low by Eqs. (1) and (2)], is the effective Hamiltonian of
a mobile impurity moving in a LL [12–14,24,25]; see
Eqs. (3)–(5) below. Singularities of DRFs at the edges of
support are the main subject of this Letter. We show that
their exponents for Galilean-invariant systems with inter-
actions decaying faster than / 1=x can be expressed as
functions of "ðkÞ and LL parameters. Phenomenological
considerations allow us also to resolve the discrepancy
[12,17] regarding the antiferromagnetic spin-1=2 XXZ
model in zero magnetic field in favor of Ref. [12].
We are interested in the zero temperature DSF,

Sðk;!Þ ¼
Z

dxdteið!t�kxÞh�ðx; tÞ�ð0; 0Þi; (1)

and spectral function Aðk;!Þ ¼ � 1
� ImGðk;!Þ sgn!,

where Green’s function Gðk;!Þ is defined by [26]

Gðk;!Þ ¼ �i
ZZ

dxdteið!t�kxÞhTð�ðx; tÞ�yð0; 0ÞÞi: (2)

Here �ðx; tÞ and �ðx; tÞ are annihilation and density op-
erators, respectively, and T denotes time ordering. Energy
! is measured from chemical potential, so Aðk;!Þ for!>
0 (!< 0) describes the response of the system to an
addition of an extra particle (hole).
To be specific, we first discuss singularities of fermionic

spectral function in the region jkj< kf;! < 0, where kf is

Fermi momentum. Singularity can be described [12–14] by
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the effective Hamiltonian

H0 ¼ v

2�

Z
dx

�
Kðr�Þ2 þ 1

K
ðr�Þ2

�
; (3)

Hd ¼
Z

dxdyðxÞ
�
"ðkÞ � ivd

@

@x

�
dðxÞ; (4)

Hint ¼
Z

dx½VR�RðxÞ þ VL�LðxÞ��dðxÞ

¼
Z

dx

�
VRr ���

2�
� VLr �þ�

2�

�
dðxÞdyðxÞ: (5)

Here v is the sound velocity, and fields � and � describe
low energy excitations and have a commutation relation
½�ðxÞ;r�ðx0Þ� ¼ i��ðx� x0Þ (we use the notation of
Ref. [3]). Operator dðxÞ creates a mobile hole of momen-
tum k and velocity vd ¼ @"ðkÞ=@k, and operator �dðxÞ ¼
dðxÞdyðxÞ is the hole density. In terms of hole operator
dðx; tÞ, the singular part of the spectral function near "ðkÞ is
given by

Aðk;!Þ /
Z

dxdtei!thdyðx; tÞdð0; 0ÞiH0þHdþHint
: (6)

The canonical transformation � ¼ ~�
ffiffiffiffi
K

p
, � ¼ ~�=

ffiffiffiffi
K

p
di-

agonalizes H0, while the term Hint can be removed [25] by
unitary transformation UyðH0 þHd þHintÞU, where

Uy ¼ e�i
R

dxf½�þðkÞ=2��½~�ðxÞ� ~�ðxÞ��½��ðkÞ=2��½ ~�ðxÞþ~�ðxÞ�gdðxÞdyðxÞ:

Momentum dependent phase shifts �þðkÞ, ��ðkÞ are re-
lated to the parameters of Hint as

ðVL�VRÞ=
ffiffiffiffi
K

p ¼���ðkÞðvdþvÞþ�þðkÞðvd�vÞ; (7)

ðVLþVRÞ
ffiffiffiffi
K

p ¼���ðkÞðvdþvÞ��þðkÞðvd�vÞ: (8)

Calculating UydðxÞU together with Eq. (6), one obtains

Aðk;!Þ/�ð"ðkÞ�!Þ
��������

1

"ðkÞ�!

��������
1�½�þðkÞ=2��2�½��ðkÞ=2��2

:

(9)

To obtain phase shifts, one needs to fix VR and VL in
Eq. (5). We relate VR and VL to "ðkÞ by calculating in
twoways the shift of the position of the edge under uniform
density and current variations.
Uniform density variation �� results in a finite expec-

tation value hr’i ¼ ����. Evaluating the shift of "ðkÞ in
two ways, we obtain

� VR þ VL

2
¼ @"ðkÞ

@�
þ @�

@�
¼ @"ðkÞ

@�
þ v�

K
: (10)

The left-hand side follows from the effective Hamiltonian
given by Eqs. (3)–(5), while the right-hand side follows
from the evaluation of the edge position from its thermo-
dynamic definition [taking into account that energy "ðkÞ is
measured with respect to chemical potential �].
Uniform current through the system results in a finite

value of hr�i, which for Galilean systems corresponds to a
motion with constant velocity u ¼ hr�i=m, wherem is the
bare mass of the constituent particles. Then following the
argument of Refs. [22,27], one can use Galilean invariance
to evaluate the change of "ðkÞ. Comparing it with the
change evaluated using Eqs. (3)–(5) leads to

VL � VR

2�
¼ k

m
� @"ðkÞ

@k
: (11)

Combining now Eqs. (7) and (8) with Eqs. (10) and (11),
we obtain the central result of this Letter:

��ðkÞ
2�

¼
1ffiffiffi
K

p ðkm � @"ðkÞ
@k Þ � ffiffiffiffi

K
p ð1� @"ðkÞ

@� þ v
KÞ

2ð� @"ðkÞ
@k � vÞ : (12)

On the basis of Galilean invariance, it establishes a model-
independent phenomenological relation between the edge
position "ðkÞ and other measurable quantities, such as the
exponent of spectral function, Eq. (9). Even for usual LL
theory Galilean-invariant systems are special. For them,
the LL parameter K can be expressed [2] as a renormal-
ization of sound velocity compared to Fermi velocity vf in

the absence of interactions, K ¼ vf=v ¼ ��=ðmvÞ. Our
results are a generalization of the special properties of
Galilean systems beyond the low energy limit.

FIG. 1 (color online). (a) Spectral function Aðk; !Þ for spinless
fermions in momentum-energy plane at T ¼ 0. Shaded areas
indicate the regions where Aðk;!Þ � 0, and "ðkÞ is the edge of
the support in the basic region jkj< kf;! < 0, where kf is

Fermi momentum. Edges in other regions can be obtained
from "ðkÞ by combinations of shifts and inversions. (b) A sketch
of constant k scan of the spectral function for jkj< kf.

Singularity of Aðk;!Þ near ! � "ðkÞ can be described using
three-subband model of a mobile impurity moving in a Luttinger
liquid, Eqs. (3)–(6), and the answer is given by Eqs. (9) and (12).
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While Eq. (11) does not hold on a lattice, Eq. (10) still
works, and will be used below for the XXZmodel. One can
formulate an analog of Eq. (11) for LLs on lattices using
the derivative of "ðkÞ with respect to total flux through the
system under periodic boundary conditions. Energies are
much easier to evaluate numerically compared to correla-
tion functions, so our results can be used as a benchmark
for numerical methods for evaluation of DRFs.

Away from the basic region jkj< kf;! < 0, positions of

edges can be obtained from "ðkÞ in the basic region by a
combination of inversions and shifts. States which de-
fine the positions of the edges are given by a hole and
excitations near Fermi points. Exponents of divergences
can also be obtained using the three-subband model given
by Eqs. (3)–(5), and here we only summarize the results.

For the spectral function momentum k in the region
ð2n� 1Þkf < k < ð2nþ 1Þkf, hole momentum equals

kn ¼ k� 2nkf. Near the edges for !> 0 (!< 0), the

spectral function is defined by

Aðk;!Þ / �ð"ðknÞ �!Þ
��������

1

!� "ðknÞ
��������

�n;�ðkÞ
; (13)

�n;�ðkÞ ¼ 1� 1

2

�
2n

ffiffiffiffi
K

p � �þðknÞ þ ��ðknÞ
2�

�
2

� 1

2

�
1� 1ffiffiffiffi

K
p þ �þðknÞ � ��ðknÞ

2�

�
2
: (14)

DSF Sðk;!Þ is nonvanishing only for !> 0, and for
2nkf < k < 2ðnþ 1Þkf hole momentum is given by k�n ¼
ð2nþ 1Þkf � k. The exponent of DSF �nðkÞ is defined by

Sðk;!Þ / �ð!þ "ðk�nÞÞ
��������

1

!þ "ðk�nÞ
��������

�nðkÞ
; (15)

�nðkÞ ¼ 1� 1

2

�
ð2nþ 1Þ ffiffiffiffi

K
p þ �þðk�nÞ þ ��ðk�nÞ

2�

�
2

� 1

2

�
1ffiffiffiffi
K

p þ �þðk�nÞ � ��ðk�nÞ
2�

�
2
: (16)

For bosons, spectral function has divergences at �"ðk�nÞ
for !> 0 (!< 0), and exponents equal

�b
n;�ðkÞ ¼ 1� 1

2

�
ð2nþ 1Þ ffiffiffiffi

K
p � �þðk�nÞ þ ��ðk�nÞ

2�

�
2

� 1

2

�
1� 1ffiffiffiffi

K
p þ �þðk�nÞ � ��ðk�nÞ

2�

�
2
: (17)

Let us now discuss several cases where one can explic-
itly check our phenomenological predictions. The shift of
the position of "ðkÞ can be evaluated using perturbation
theory in interaction strength for any momenta, and pre-
dictions following from our theory coincide with results of
Refs. [13,14]. By using the approximation "ðkÞ � vðk�
kfÞ for any interaction strength in the vicinity of the right

Fermi point, from Eqs. (8) and (10) one can recover the
universal phase shift [5]

��ðkf � 0Þ
2�

¼ 1

2
ffiffiffiffi
K

p �
ffiffiffiffi
K

p
2

; (18)

which holds irrespective of Galilean invariance. One can
also obtain �þðkf � 0Þ from Eq. (12). For that, one has to

use the expansion "ðkÞ � vðk� kfÞ þ ðk� kfÞ2=ð2m�Þ
and the expression for 1=m� obtained in Ref. [15], which
is valid for Hamiltonians with interactions decaying faster
than /1=x2. For Galilean-invariant systems, it simplifies to

1=m� ¼ ½ ffiffiffiffi
K

p
=ð2�Þ�@v=@nþ 1=ð2m ffiffiffiffi

K
p Þ, and after some

simple algebra with Eq. (12) one reproduces the univer-

sal phase shift [5] �þðkf � 0Þ=ð2�Þ ¼ 1� 1=ð2 ffiffiffiffi
K

p Þ �ffiffiffiffi
K

p
=2. One can also explicitly check that exponents for

Lieb-Liniger [28] and Calogero-Sutherland [29] models
evaluated from their excitation spectra reproduce the re-
sults of Refs. [16] and [14,20], respectively.
The crucial step in the calculation of the exponents is the

identification of the spectral function Aðk;!Þ defined in
terms of constituent particles, Eq. (2), with the correlation
function of operator d in Eq. (6). Comparison with solvable
cases above shows that such identification indeed holds in
the vicinity of Fermi points for any interactions, as well as
for any momentum for weak interactions. While we cannot
prove that it holds for any strongly interacting Galilean-
invariant system, we expect it to be valid as long as the
position of the edge satisfies��������

@"ðkÞ
@k

��������<v for jkj< kf; (19)

and interactions decay faster than / 1=x. Equation (19)
guarantees that phases in Eq. (12) are continuous functions
of momentum, and the state which corresponds to the edge
of the basic region of the spectral function support does not
contain particle-hole excitations near left or right Fermi
points.
Let us now discuss how considerations of this Letter can

resolve a discrepancy between results of Refs. [12,17] for
correlations of the XXZ model in zero magnetic field. In

our notations, these references predict �PWA� ðkÞ=ð2�Þ ¼
��PWAþ ðkÞ=ð2�Þ ¼ ð1= ffiffiffiffi

K
p � ffiffiffiffi

K
p Þ=2 and �CP� ðkÞ=ð2�Þ ¼

��CPþ ðkÞ=ð2�Þ ¼ ð1� KÞ=2, respectively. Identification
of these phase shifts was based on the analysis of finite
size corrections to energies obtained from the exact solu-
tion. Their interpretation for the XXZ model in zero mag-
netic field is ambiguous, since the half filled lattice is a
special point for the Bethe ansatz solution [30]. On the
other hand, our approach constrains phase shift via "ðkÞ,
which is well defined in the thermodynamic limit, and
resolves the discrepancy.
First, we note that �PWA� ðkÞ satisfies the universal rela-

tion given by Eq. (18), while �CP� ðkÞ does not. Second,
Eqs. (7), (8), and (10) hold on the lattice for any k, and one
can easily evaluate excitation spectrum of the XXZ model
numerically from the exact solution [30]. This way, we
have verified that �PWA� ðkÞ satisfy them, while �CP� ðkÞ do
not. Third, one can use SUð2Þ invariance to independently

PRL 102, 126405 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

27 MARCH 2009

126405-3



derive results of Ref. [12] at the XXX point. The argument
is very similar to the reasoning which fixes LL parameter
K ¼ 1=2 at the XXX point [3,4] by requiring that long
distance asymptotes of hSzðxÞSzð0Þi and hS�ðxÞSþð0Þi co-
incide. But SUð2Þ symmetry also establishes a relation
between spin DRFs Szzðk;!Þ and S�þðk;!Þ in the entire
momentum-energy plane, including the edges of supports.
There Szzðk;!Þ behaves as the sum of different power laws
(up to logarithmic corrections)

Szzðk; !Þ / X
l

��������
1

!� "ðkÞ
��������

�zz
l
: (20)

Different power laws appear because of the umklapp pro-
cesses that are allowed on a half filled lattice. SUð2Þ
symmetry implies that the same set of exponents should
apply for S�þðk; !Þ as well. These exponents can be
evaluated in terms of ��ðkÞ and K for any l, and the
coincidence of two sets of exponents unambiguously fixes

��ðkÞ
2�

¼ � 1

2
ffiffiffi
2

p ; (21)

as in Ref. [12] for K ¼ 1=2. The full sequence of expo-
nents is

�zz
l ¼ 3=4� ð4lþ 1Þ2=4: (22)

Note, that we did not use integrability in the argument for
the XXX model, so Eq. (22) should apply for SUð2Þ
invariant models with longer range interactions as well, if
the spin chain remains a gapless LL.

To summarize, we have considered zero temperature
dynamic response functions of 1D systems near edges of
support in the momentum-energy plane. Continuous sym-
metries can be used to fix the exponents of power law
divergences of dynamic response functions near the edges.
For spinless Galilean-invariant systems of fermions or
bosons, we have obtained phenomenological expressions,
Eqs. (12), (14), (16), and (17), which establish model-
independent relations of the exponents of dynamic re-
sponse functions to the position of the edge of support
"ðkÞ. For a spin-1=2 anitferromagnetic Heisenberg chain in
zero magnetic field, SUð2Þ symmetry dictates exponents
given by Eq. (22) for all momenta regardless of the inter-
action range.
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