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We use quantum Monte Carlo methods to calculate the zero-temperature phase diagram of the two-

dimensional homogeneous electron gas. We find a transition from a paramagnetic fluid to an antiferro-

magnetic triangular Wigner crystal at density parameter rs ¼ 31ð1Þ a:u: and a transition to a ferromag-

netic crystal at rs ¼ 38ð5Þ a:u: The fully spin-polarized fluid is never stable. We search for, but do not find,

the ferromagnetic ‘‘hybrid’’ phase proposed by H. Falakshahi and X. Waintal [Phys. Rev. Lett. 94, 046801

(2005)].
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The two-dimensional (2D) homogeneous electron gas
(HEG) is one of the most important model systems in
condensed-matter physics. It is our basic model of the
conduction electrons in layered semiconductor devices,
and consists of a set of electrons moving in 2D in a
uniform, inert, neutralizing background. At high densities
the HEG exists in a Fermi fluid phase, but at low densities it
forms a Wigner crystal to minimize the electrostatic re-
pulsion between the electrons [1]. Classical 2D Wigner
crystals can be produced in the laboratory by spraying
electrons onto droplets of liquid He [2], and quantum
Wigner crystals can be formed at the interface between
two semiconductors [3]. As well as being objects of fun-
damental scientific interest, 2D Wigner crystals may be of
use in quantum computing devices [4].

At high densities the fluid ground state is paramagnetic,
but at low densities this phase is unstable to a ferromag-
netic fluid. There is some experimental evidence that a
ferromagnetic fluid is stable at densities between the para-
magnetic fluid and crystal phases [5], but these data are not
conclusive. Previous theoretical studies [6,7] have reported
a region of stability for the ferromagnetic fluid. However,
the energy differences between the various phases are
small, and highly accurate calculations are required to
resolve them. Another issue of recent interest is the pos-
sible existence of intermediate phases in the vicinity of the
fluid-crystal transition [8–11]. In this Letter we address the
issues of the stability of the ferromagnetic fluid, the fluid-
crystal transition, the magnetic behavior of the crystal, and
the possibility of a ‘‘hybrid’’ phase of the type proposed in
Ref. [11].

We have performed quantum Monte Carlo (QMC)
[12,13] calculations for the 2D fluid and Wigner-crystal
phases, achieving much smaller statistical error bars than
previous studies [6,7,14]. We used the variational and
diffusion quantumMonte Carlo (VMC and DMC) methods
as implemented in the CASINO code [15]. DMC simulation
is the most accurate method available for studying quan-
tum many-body systems such as electron gases. Fermionic
symmetry is imposed via the fixed-node approximation
[16], in which the nodal surface is constrained to equal

that of a trial wave function. The Ewald method was used
to calculate the electron-electron interaction energy [17].
We used extremely flexible Slater-Jastrow-backflow [18]
wave functions, and we optimized the crystal orbitals by
directly minimizing the DMC energy. Our fixed-node
DMC energies are therefore more accurate than those of
earlier calculations. Finally, we have dealt with finite-size
effects in a more sophisticated fashion than previous stud-
ies [19].
It is well established that the triangular crystal has a

considerably lower energy than competing lattices in the
density range of interest. A triangular lattice was there-
fore used in all our crystal calculations. Antiferromagne-
tism is frustrated on a triangular lattice, and antiferromag-
netic crystals are expected to form a spin liquid [20].
Instead, we have considered antiferromagnetic crystals
consisting of alternating lines of spin-up and spin-down
electrons.
We used the Jastrow factor proposed in Ref. [21]. Plane-

wave orbitals expðiG � rÞ were used in the Slater wave
function in our fluid calculations, while identical
Gaussian orbitals expð�Cr2Þ centered on lattice sites
were used in our crystal calculations. The Slater wave
function was evaluated at quasiparticle coordinates defined
by the backflow (BF) transformation described in
Ref. [18]. The free parameters in the Jastrow factor and
BF function were optimized within VMC calculations by
minimizing the energy [22]. The BF functions for antipar-
allel spins are much larger than those for parallel spins,
which are already kept apart by Pauli exclusion. BF is less
important in the crystal because the localization of the
orbitals keeps the electrons apart. For example, at rs ¼
30 a:u: [23], BF lowers the DMC energy of the 42-electron
paramagnetic fluid by 0.000 036(3) a.u. per electron,
whereas it lowers the energy of the 64-electron ferromag-
netic Wigner crystal by only 0.000 002 3(3) a.u. per elec-
tron. Time-step bias was removed from our final DMC
energies by linear extrapolation to zero time step [24]. A
target population of at least 1500 configurations was used
in our production runs, making population-control bias
negligible [24].
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We optimized the Gaussian exponent C in the crystal
orbitals by minimizing the Slater-Jastrow DMC energy. At
rs ¼ 40 a:u:, the DMC-optimized exponent of the ferro-
magnetic (F) crystal (CF

DMC � 0:0003 a:u:) is smaller than

the exponent obtained by minimizing the VMC energy
(CF

VMC � 0:0006 a:u: with our Jastrow factor), which is,

in turn, substantially smaller than the exponent within
either Hartree or Hartree-Fock theory (CF

H ¼ 0:0019 a:u:)
[25]. The DMC energy depends much less sensitively than
the VMC energy on the value of C [24]. However, the
energy difference between DMC results obtained withC ¼
CF
DMC and C ¼ CF

VMC is significant, while the fixed-node

error that results from using C ¼ CF
H is very substantial.

We find that the DMC-optimized exponents of 64-electron

crystals at different densities are given by CF
DMC ¼

0:071r�3=2
s and that the DMC-optimized exponents for

16-, 64-, and 196-electron crystals at rs ¼ 40 a:u: are
very similar. We have therefore used C ¼ CF

DMC at all

densities and system sizes. For antiferromagnetic crystals

we have used C ¼ CAF
DMC ¼ 0:082r�3=2

s .

Simulations were performed with up to 162, 109, 100,
and 121 electrons for the paramagnetic fluid, fully spin-
polarized (ferromagnetic) fluid, antiferromagnetic crystal,
and ferromagnetic crystal, respectively [24]. We elimi-
nated single-particle finite-size effects from the fluid en-
ergies by twist averaging within the canonical ensemble
[26]. Every so often during VMC or DMC simulations, an
offset to the grid of G vectors was chosen at random in the
first Brillouin zone of the simulation cell, the lowest-
energy plane-wave orbitals were selected, and a short
period of reequilibration was carried out. The finite-size
errors in the energy per electron resulting from the com-
pression of the exchange-correlation hole into the simula-
tion cell and the neglect of long-ranged correlations in the

kinetic energy fall off as N�5=4 [19]. We therefore extrapo-
lated our fluid energies to infinite system size by fitting our

data at each density to EN ¼ E1 � c=N5=4, where EN is
the energy per electron of the N-electron system and c and
E1 are fitting parameters [24]. This differs from the form
of bias that has been incorrectly assumed in previous
studies of the 2D HEG [6,7,14].

Our DMC results for the different phases are given in
Table I. Our Wigner-crystal energy data were fitted to the
first five terms in the low-density expansion of the crystal

energy (E ¼ c1r
�1
s þ c3=2r

�3=2
s þ c2r

�2
s þ c5=2r

�5=2
s þ

c3r
�3
s ) [27]. The first term is the Madelung energy of the

static lattice, while the second is the quasiharmonic zero-
point phonon energy. The corresponding coefficients can
be determined analytically: c1 ¼ �1:106 103 and c3=2 ¼
0:814 [28]. The remaining three coefficients were deter-
mined by fitting to our QMC data, giving c2 ¼ 0:113 743,
c5=2 ¼ �1:184 994, and c3 ¼ 3:097 610 for the ferromag-

netic crystal and c2 ¼ 0:266 297 7, c5=2 ¼ �2:632 86, and

c3 ¼ 6:246 358 for the antiferromagnetic crystal. We fitted

our fluid energy data to the parameterization of the corre-
lation energy suggested by Rapisarda and Senatore
[Eq. (28) of Ref. [7]]. For the paramagnetic fluid we find
a0 ¼ �0:186 305 2 a:u:, a1 ¼ 6:821 839, a2 ¼ 0:155 226,
and a3 ¼ 3:423 013, where a0, a1, a2, and a3 are the free
parameters in Rapisarda and Senatore’s fitting form. For
our ferromagnetic data we obtain a0 ¼ �0:290 910 2 a:u:,
a1 ¼ �0:624 383 6, a2 ¼ 1:656 628, and a3 ¼ 3:791 685.
We find a greater difference between the energies of the
paramagnetic and ferromagnetic Fermi fluids at rs ¼
20 a:u: than Attaccalite et al. [14], resulting in somewhat
smaller values of the spin susceptibility.
The ground-state energies of the different phases of the

2D HEG are plotted against rs in Fig. 1. Unlike previous
QMC studies, our statistical error bars are sufficiently
small that we can resolve the energy difference between
the ferromagnetic and paramagnetic fluids. We can also
identify the crystallization density with much greater pre-
cision. Previous studies found crystallization to occur at
rs ¼ 37ð5Þ a:u: [6] and rs ¼ 34ð4Þ a:u: [7]. We find the
crystallization density to be rs ¼ 31ð1Þ a:u:, but the tran-
sition is from the paramagnetic fluid to an antiferromag-
netic crystal, not the ferromagnetic fluid to the
ferromagnetic crystal as found in the previous studies.
Our calculations locate the density at which the paramag-
netic fluid becomes unstable to the ferromagnetic fluid at
about rs ¼ 40 a:u:, but at this density the Wigner crystal is
more stable than either fluid phase, so we do not find a
region of stability for the ferromagnetic fluid. We have
looked for a region of stability for a partially spin-polarized
fluid by calculating the energy of a fluid of spin polariza-
tion � ¼ 2=5 at rs ¼ 35 a:u: The DMC energy, extrapo-
lated to zero time step and infinite size, is
�0:027 666ð1Þ a:u: per electron, which is not significantly
less than the energies of the paramagnetic and ferromag-
netic fluids, but is significantly higher than the crystal
energy (see Table I). It is therefore unlikely that a region
of stability exists for a partially spin-polarized fluid. We
do, however, find a transition from an antiferromagnetic

TABLE I. DMC energy as a function of rs for ferromagnetic
and antiferromagnetic triangular Wigner crystals, and paramag-
netic and fully ferromagnetic Fermi fluids. All results have been
extrapolated to zero time step and infinite system size.

DMC energy (10�2 a:u:=elec:)
rs Ferro. crystal Antif. crys. Para. fluid Ferro. fluid

15 �5:9665ð1Þ . . . . . . . . .
20 �4:6195ð2Þ �4:6229ð2Þ �4:6305ð4Þ �4:6213ð3Þ
25 �3:7731ð2Þ �3:7751ð3Þ �3:7774ð2Þ �3:7740ð2Þ
30 �3:1917ð2Þ �3:1922ð2Þ �3:1926ð1Þ �3:1913ð1Þ
35 �2:7669ð1Þ �2:7672ð1Þ �2:7665ð1Þ �2:7657ð1Þ
40 �2:4432ð1Þ �2:4431ð2Þ �2:4416ð1Þ �2:4416ð1Þ
45 �2:1881ð1Þ �2:1875ð2Þ . . . . . .
50 �1:9817ð2Þ �1:9814ð2Þ . . . . . .
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Wigner crystal to a ferromagnetic one at rs ¼ 38ð5Þ a:u:
This is considerably higher than the density at which Bernu
et al. [20] found a transition from a spin liquid to a
ferromagnetic crystal using a multispin exchange model
(rs ¼ 175 a:u:). An experimental result for the crystalliza-
tion density is rs ¼ 35:1ð9Þ a:u: [29], which is somewhat
lower than the QMC crystallization density. This suggests
that the ideal 2D HEG is not a perfect model for electron
layers in real semiconductor devices.

It has been argued that the transition from a 2D Fermi
fluid to a Wigner crystal cannot be first order, because, at
the transition density, it is energetically favorable to create
boundaries between macroscopically separated regions of
fluid and crystal [8]. The energy of the Bose fluid is
substantially lower than that of the Fermi fluid in the
vicinity of the crystallization density in 2D, unlike 3D
[30]. There is therefore more scope for interesting phase
behavior in 2D. Various intermediate phases have been
proposed in the literature, such as a hexatic phase with
orientational but not translational order [9], a supersolid
phase [10], or a microemulsion phase [8]. Falakshahi and

Waintal [11] have suggested that a ‘‘hybrid’’ phase is stable
in the vicinity of the transition density from a ferromag-
netic fluid to a ferromagnetic Wigner crystal. (We have
found that a paramagnetic fluid is stable at this density;
however, we restrict our attention to ferromagnetic HEGs
to investigate the proposed hybrid phase.) The hybrid
phase has the same symmetry as the Wigner crystal, but
has partially delocalized orbitals.
Falakshahi and Waintal generated hybrid orbitals for the

ferromagnetic N-electron system by solving the
Schrödinger equation for a single, positively charged par-
ticle moving in a lattice of negative charges placed at theN
Wigner-crystal lattice sites. If the charge of the test particle
is zero then the orbitals for the system are plane waves; i.e.,
fluid orbitals are obtained. If the charge is large then
localized (crystal-like) orbitals are obtained. As the charge
of the test particle is increased from zero, there must come
a point at which a band gap opens up between the N and
ðN þ 1Þth states. The set of orbitals obtained at the point at
which the gap opens correspond to the hybrid phase. We
have tried to find such a hybrid phase by optimizing
orbitals of the form

�ðrÞ ¼ A expð�Cr2Þ þX

P

cP
X

G2P

cosðG � rÞ (1)

centered on the crystal lattice sites, where P denotes a star
of symmetry-equivalent simulation-cell G vectors. The
coefficients fcPg and C are optimizable parameters.
Equation (1) is a general expansion of Wannier-like orbi-
tals. It can therefore describe the crystal and hybrid phases,
but not the fluid, since the latter corresponds to a partially
filled band.
Our QMC results for ferromagnetic HEGs at rs ¼

30 a:u: obtained with different orbitals are shown in
Table II. Within VMC it is possible to lower the energy
significantly by optimizing the plane-wave coefficients in
Eq. (1), apparently suggesting that Gaussian crystal orbi-
tals are nonoptimal. This does not carry over to DMC,
however. In fact it is more important to use Gaussian
exponents optimized within DMC than it is to use either
plane-wave expansions in the orbitals or BF functions,
suggesting that the fixed-node errors in our crystal DMC
energies are very small. We have searched for the hybrid
phase by optimizing wave functions with orbitals of the
form given in Eq. (1) using different starting points, but
have not been able to lower the DMC energy significantly.
While this does not prove the nonexistence of the hybrid
phase, as searching for minima in a high-dimensional
space is a very difficult problem, the fact that our extensive
searches have been unable to find it makes its existence
unlikely.
In summary, we have studied the zero-temperature phase

behavior of the 2D HEG using QMC. We find a transition
from a paramagnetic fluid to an antiferromagnetic triangu-
lar Wigner crystal at rs ¼ 31ð1Þ a:u: We find no region of
stability for a ferromagnetic fluid, although we find that the
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FIG. 1 (color online). DMC energy as a function of rs for
ferromagnetic and antiferromagnetic triangular Wigner crystals
and paramagnetic and fully ferromagnetic Fermi fluids. In each
case the Madelung energy of a triangular crystal has been
subtracted from the energy and the result has been rescaled by

r3=2s to highlight the differences between the curves.
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paramagnetic fluid is unstable to the ferromagnetic fluid at
about rs ¼ 40 a:u: and the antiferromagnetic crystal is
unstable to the ferromagnetic crystal at rs ¼ 38ð5Þ a:u:
We find no evidence for the existence of hybrid phases of
the type suggested by Falakshahi and Waintal [11], but we
cannot, of course, rule out the existence of other types of
intermediate phase.
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TABLE II. Non-twist-averaged QMC energies for a ferromag-
netic, 121-electron HEG at rs ¼ 30 a:u: obtained using different
orbitals: crystal (Gaussian) orbitals, in which the Gaussian ex-
ponent has been optimized within VMC or DMC and hybrid
(Gauss:þ plane-wave) orbitals of the form given in Eq. (1) with
the coefficients of 20 stars of G vectors optimized within VMC.
The orbitals were centered on the lattice sites of a triangu-
lar crystal. VMC-optimized BF functions were used in some
of the calculations. DMC energies were obtained using a time
step of 1 a.u. The non-twist-averaged DMC energy of the
ferromagnetic Fermi fluid at this system size and density
[�0:031 935 4ð5Þ a:u: per electron] is relatively low due to
single-particle finite-size effects, so that, if anything, finite-size
effects are expected to favor the hybrid phase.

Method Orbitals BF Energy (a:u:=elec:)

VMC DMC-opt. Gauss. No �0:031 849 8ð1Þ
VMC DMC-opt. Gauss:þ PW No �0:031 849 9ð1Þ
VMC VMC-opt. Gauss. No �0:031 856 2ð1Þ
VMC Gauss:þ PW No �0:031 861 9ð3Þ
VMC Gauss:þ PW Yes �0:031 871 3ð1Þ
DMC Gauss:þ PW Yes �0:031 918 0ð3Þ
DMC Gauss:þ PW No �0:031 918 4ð3Þ
DMC VMC-opt. Gauss. No �0:031 918 4ð3Þ
DMC DMC-opt. Gauss. No �0:031 919 0ð2Þ
DMC DMC-opt. Gauss:þ PW No �0:031 920 1ð3Þ
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