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In the context of a classical example of glass formation in three dimensions, we exemplify how to

construct a statistical-mechanical theory of the glass transition. At the heart of the approach is a simple

criterion for verifying a proper choice of upscaled quasispecies that allow the construction of a theory with

a finite number of ‘‘states.’’ Once constructed, the theory identifies a typical scale � that increases rapidly

with lowering the temperature and which determines the �-relaxation time �� as �� � expð��=TÞ, with
� a typical chemical potential. The theory can predict relaxation times at temperatures that are

inaccessible to numerical simulations.
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Introduction.—Among the best studied models of the
glass transitions are those employing point particles with a
soft binary potential. Some repeatedly studied examples
are the Kob-Andersen model [1], the Shintani-Tanaka
model [2], the Dzugutov model [3], and various versions
of binary mixtures with purely repulsive potentials; see, for
example, [4–6]. While easy to simulate on the computer,
these models are challenging for theorists due to the fact
that it is extremely hard to evaluate statistical-mechanical
partition-function integrals in continuous coordinates. It is
therefore very tempting to find a reasonable upscaling
(coarse-graining) method that would define a discrete sta-
tistical mechanics with partition sums rather than integrals,
with the sum running on a finite number of quasispecies
which have well characterized degeneracies and enthal-
pies. Indeed, in a number of examples in two dimensions
(2D), it was shown that such a discrete statistical mechan-
ics is possible [7–11] and quite advantageous [12,13] in
providing a successful description of the statistics and the
dynamics of systems undergoing the glass transition. In
this Letter, we offer a general criterion for the selection of
upscaled quasispecies and demonstrate it, for the first time,
in the context of a 3D model system undergoing a glass
transition. While for 2D systems the approach discussed
here could be confused with ‘‘defect’’ theories or kineti-
cally constrained models [14], the present discussion in 3D
shows the generality of the approach and its independence
of previous methods. The novel validation scheme pre-
sented here guarantees the existence of statistical mechan-
ics that can be used also when simulations become too slow
to predict the correct relaxation times.

Model.—We employ here a version of a much studied
model of a 50:50 mixture of N point particles in three
dimensions (N ¼ 4096 in our case), interacting via a bi-
nary potential. We refer to half of the particles as ‘‘small’’
and half as ‘‘large’’; they interact via the potential UðrijÞ:

UðrijÞ ¼
�
�½ð�ij

rij
Þ� � ð�ij

rij
Þ� þ a0�; rij � rcði; jÞ;

0; rij > rcði; jÞ:
(1)

Here � is the energy scale and �ij ¼ 1:0, 1.2, or 1.4 for

small-small, small-large, or large-large interactions, re-
spectively. For the sake of numerical speed the potential
is cut off smoothly at a distance, denoted as rc, which is
calculated by solving @U=@rijjrij¼rc ¼ 0 which translates

to rc ¼ ð�=�Þ1=����ij. The parameter a0 is chosen to

guarantee the condition UðrcÞ ¼ 0. Below, we use � ¼ 8

and � ¼ 6, resulting in rc ¼
ffiffiffiffiffiffiffiffi
8=6

p
�ij and a0 ¼

0:105 468 75.
As in many of these models, one can quantify the

slowing-down in the supercooled regime by measuring a
typical correlation function. Here we measured the self part
of the intermediate scattering function [5] summed over
the large particles only:

Fkðt;TÞ �
�
2=N

XN=2

i¼1

expfik � ½riðtÞ � rið0Þ�g
�
: (2)

In Fig. 1, we show these correlation functions for k ¼
5:1��1 and for a range of temperatures as indicated in
the figure. We see the usual rapid slowing-down that
can be measured by introducing the typical time scale ��
that is determined by the time where Fkðt ¼ ��;TÞ ¼
Fkð0;TÞ=e � 1=e. The relaxation times are shown in the
inset in Fig. 1 as a function of 1=T in a log-lin plot to stress
the non-Arrhenius dependence at lower T.
Statistical mechanics.—Our aim is to provide a

statistical-mechanical theory that captures the structural
changes upon lowering the temperature such that there
will pop up a typical scale that can be used to predict the
relaxation time ��. To this aim we need to upscale (coarse-
grain) from particles to quasispecies that can be char-
acterized by their enthalpy and degeneracy. Upscaling
can be done in various ways, and there is no unique
algorithm to select a priori a ‘‘best’’ upscaling. Here we
offer a criterion to validate a chosen upscaling. We choose
to work with particles and their nearest neighbors, where
‘‘neighbors’’ are defined as all of the particles j around a
chosen central particle i that are within the range of inter-
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action rcði; jÞ. In the interesting range of temperatures, we
find 8 quasispecies with one small central particle and
3; 4; . . . ; 10 neighbors and 9 quasispecies with one large
central particlewith 6; 7; . . . ; 14 neighbors, all in all 17 qua-
sispecies. Other combinations have negligible concentra-
tion (<0:5%) throughout the temperature range. We denote
these quasispecies as CsðnÞ and C‘ðnÞ, with s and ‘ denot-
ing the small or large central particle, respectively, while n
denotes the number of neighbors. We measured the mole
fractions hCsðnÞiðTÞ and hC‘ðnÞiðTÞ, and the results are
shown in Fig. 2.

To decide whether this upscaling provides a useful sta-
tistical mechanics, we now ask whether there exist free
energies F sðn;TÞ and F ‘ðn;TÞ such that

hCsðnÞiðTÞ ¼ e�F sðn;TÞ=T

2
P

10
n¼3 e

�F sðn;TÞ=T ;

hC‘ðnÞiðTÞ ¼ e�F ‘ðn;TÞ=T

2
P

14
n¼6 e

�F ‘ðn;TÞ=T :

(3)

The free energies are found by inverting Eqs. (3) in terms
of the measured concentrations. We then plot these quan-
tities as a function of the temperature, as demonstrated for
the present case in Fig. 3. If F sðn;TÞ and F ‘ðn;TÞ can be
well approximated as linear in the temperature, we can
interpret

F sðn;TÞ � HsðnÞ � T lngsðnÞ;
F ‘ðn;TÞ � H‘ðnÞ � T lng‘ðnÞ;

(4)

where now the degeneracies gsðnÞ and g‘ðnÞ (read from the
slopes in Fig. 3) and enthalpiesHsðnÞ andH‘ðnÞ (read from
the intercepts) are temperature independent. This validates
the choice of upscaling. In other words, the approximate
linearity of the inverted free energies in the temperature

means that we can write the concentrations as

hCsðnÞiðTÞ � gsðnÞe�HsðnÞ=T

2
P

10
n¼3 gsðnÞe�HsðnÞ=T ;

hC‘ðnÞiðTÞ � g‘ðnÞe�H‘ðnÞ=T

2
P

14
n¼6 g‘ðnÞe�H‘ðnÞ=T :

(5)

Then we can use these forms also as a prediction for
temperatures where the simulation time is too short to
observe the relaxation. The resulting degeneracies gsðnÞ
and g‘ðnÞ can be easily modeled theoretically, given basi-
cally by a Gaussian distribution around the most probable
number nmp of nearest neighbors for small and large par-

ticles, respectively:

gsðnÞ � e�½ðn�nsmpÞ2=2�2
s �; nsmp ¼ 4:65; �2

s ¼ 1:55;

g‘ðnÞ � e�½ðn�n‘mpÞ2=2�2
‘
�; n‘mp ¼ 7:50; �2

‘ ¼ 2:0:

(6)

The comparison of the theoretical to the measured degen-
eracies is shown in Fig. 4, upper panel. The same figure
shows in the middle panel the enthalpies of the various
quasispecies. One could model the enthalpies as a linear
function in n. These results are easily interpreted; we have
high enthalpies when there are large free volumes (few
neighbors). The lowest enthalpies are found when there are
many neighbors and there is not much costly free volume.
In other words, at the present density and range of tem-
peratures, the pV term dominates the energy in the en-
thalpy. Using the theoretical degeneracies and the
measured enthalpies, we compute the concentrations of
all of our quasispecies and compare them with the mea-

FIG. 2 (color online). Temperature dependence of the concen-
trations of the various quasispecies. Symbols are simulation data,
and the lines are a guide to the eye.

FIG. 1 (color online). Time dependence of the correlation
functions (2) for a range of temperatures (decreasing from left
to right) as shown in the figure. The inset shows the relaxation
time �� in a log-lin plot vs 1=T, compared to an Arrhenius
temperature dependence.
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surement in the lowest panel of Fig. 4. The agreement that
we have, especially considering the number of quasi-
species and the simplicity of the theory, is very satisfactory.
Notice that the competition between degeneracy and en-
thalpy explains the rather intricate temperature dependence
of the concentrations of the quasispecies, sometimes de-
clining when the temperature drops, sometime rising, and
sometimes having nonmonotonic behavior.

Prediction of relaxation times.—Finally, we want to
connect the structural theory to the dynamical slowing-
down. To this aim we note that there are a number of
quasispecies whose concentration goes down exponen-
tially (or maybe faster) when the temperature decreases
and that the relaxation time shoots up at the same tempera-
ture range. We refer to these quasispecies as the ‘‘liquid’’
ones; in this example, the liquid concentrations are those
with small particles with three and four neighbors and large
particles with six, seven, and eight neighbors. We sum up
these concentrations and denote the sum as hCliqiðTÞ. The
dependence of hCliqiðTÞ on the temperature is shown in

Fig. 5.
This concentration is used to define a typical scale

�ðTÞ � ½�CliqðTÞ��1=3; (7)

where � is the number density. This length scale has the

physical interpretation of the average distance between the
liquid quasispecies. It was argued before [9,10,15] that this
length scale can be also interpreted as the linear size of
relaxation events which include O½�ðTÞ� quasispecies. We

FIG. 4 (color online). Upper panel: The degeneracies gsðnÞ
and g‘ðnÞ read from the slopes of Fig. 3 (in circles) and the
degeneracies according to the Gaussian model Eq. (4). Middle
panel: The measured enthalpies. Lower panel: Comparison of
the measured concentrations of quasispecies to those calculated
from Eqs. (5) using the model degeneracies and measured
enthalpies. Here symbols are data, and lines are theoretical
predictions.

FIG. 5 (color online). The temperature dependence of CliqðTÞ
is shown as the upper continuous line. The contributions of the
various liquid subspecies are shown with symbols which are
identified in the inset.

FIG. 3 (color online). The approximate linear dependence of
the free energies of the chosen quasispecies on the temperature.
From the slope we read the degeneracy and from the intercept
the enthalpies (up to normalization); cf. Eq. (4). Note that when
the free energies are large we do not have data: the concen-
trations become exponentially small, and in a finite simulation
box they disappear completely.
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can therefore estimate the growing free energy per relaxa-
tion event as �G ¼ ��ðTÞ, where � is the typical chemi-
cal potential per involved quasispecies. This estimate, in
turn, determines the relaxation time as

��ðTÞ ¼ e��ðTÞ=T: (8)

The quality of this prediction can be gleaned from Fig. 6,
where we can see that the fit is excellent, with � � 0:04.
The intercept in Fig. 6 is of the order of unity; this is very
reassuring, since this is what we expect when T ! 1.

A few points should be stressed. As we expect (cf.
Ref. [15]), in systems with point particles and soft poten-
tial, there is no reason to fit the relaxation time to a Vogel-
Fulcher form [16] which predicts a singularity at finite
temperature. In our approach, we predict that � ! 1
only when T ! 0, and there is nothing singular on the
way, only slower and slower relaxation. At some point, the
simulation timewill be too short for the system to relax, but
we can use Eq. (8) to predict what should be the simulation
time to allow the system to reach equilibrium.

Conclusions.—In summary, we reiterate that finite sys-
tems of point particles with soft potential are different from
finite granular media or systems of hard spheres which can
truly jam and lose ergodicity. Point particles with soft
potential remain ergodic [15] and therefore should be
amenable in their supercooled regime to statistical me-
chanics. To construct simple, workable statistical mechan-

ics, one needs to upscale the system and find a collection of
quasispecies with well defined enthalpies and degenera-
cies. In this Letter, we proposed a simple criterion to
validate a choice of upscaling and demonstrated how,
once the structural theory is under control, a natural length
scale appears and can be used to determine the relaxation
time, also for temperatures that cannot be simulated due to
the fast growth of necessary relaxation time. The fact that
the present approach works equally well in two and three
dimensions provides good reason to believe that it has a
substantial degree of generality. How to use this kind of
theory to understand relaxation functions and thermo-
dynamic properties was demonstrated before in two-
dimensional examples, but there is still a large variety of
related problems in two and three dimensions that can
profit from this approach.
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