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Condensates of spin-1 sodium display rich spin dynamics due to the antiferromagnetic nature of the

interactions in this system. We use Faraday rotation spectroscopy to make a continuous and minimally

destructive measurement of the dynamics over multiple spin oscillations on a single evolving condensate.

This method provides a sharp signature to locate a magnetically tuned separatrix in phase space which

depends on the net magnetization. We also observe a phase transition from a two- to a three-component

condensate at a low but finite temperature using a Stern-Gerlach imaging technique. This transition should

be preserved as a zero-temperature quantum phase transition.
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The study of multicomponent Bose-condensed (super-
fluid) systems began with 4He-6He mixtures in the 1950s
[1] and continued with a two-component 87Rb Bose-
Einstein condensate (BEC), with atoms in two different
hyperfine states, in the late 1990s [2]. Recent studies have
focused on the investigation of spinor condensates where
interconversion among multiple spin states leads to spin
population dynamics. A number of investigations of this
effect, as well as spatial domain formation in both ferro-
magnetic F ¼ 1 87Rb BECs [3–5] and antiferromagnetic
F ¼ 1 23Na BECs [6–8], have been published. The F ¼ 2
87Rb spinor condensate presents ferromagnetic, antiferro-
magnetic, and cyclic phases [9–12]. In each of these cases,
the experimental system can be modeled with a small
number of variables.

While the ferromagnetic Rb system is becoming well
studied, the antiferromagnetic Na system remains rela-
tively unexplored. The theoretical description of such a
system suggests the possibility of manipulating the phase
space topology and dynamics of the system in ways not
possible in the ferromagnetic system (e.g., altering the
separatrix position in phase space with the magnetization
of the system) as well as the possibility of observing a
quantum-fluctuation-driven phase transition that does not
exist in the ferromagnetic system [5,13].

We consider a spinor BEC with spin angular momentum
F ¼ 1 in the presence of a magnetic field of strength B
along the z axis with the populations initialized to a non-
equilibrium state. Collisional interconversion between two
mF ¼ 0 atoms and one mF ¼ þ1 and one mF ¼ �1 atom
takes place in the condensate, leading to oscillations in the
spin populations. At ultracold temperatures, the collisions
between alkali metal atoms conserve the summed spin

angular momentum ~f ¼ ~Fa þ ~Fb. Our system, 23Na, is
antiferromagnetic inasmuch as the interaction energy of
f ¼ 2 collisions is larger than that of f ¼ 0 collisions,

which indicates that the coupling favors the mF ¼ �1
states over the mF ¼ 0 state.
The linear Zeeman shift induced by the magnetic field

does not affect the collisional interconversion, as the mag-
netic energies before and after the collision are equal in this
approximation. The population dynamics are instead
driven by an interplay between the quadratic Zeeman shift
and the spin-dependent interaction characterized by the
difference in the f ¼ 0 and f ¼ 2 interaction energies. In
23Na, a divergence in the spin oscillation period occurs
near a critical magnetic field Bc [5,8,12]. A dependence of
Bc on magnetization m (the difference in fractional popu-
lation �mF

between mF ¼ þ1 and mF ¼ �1) is predicted

in an antiferromagnetic system [5] or in a ferromagnetic
system with a radio-frequency (rf) dressing field [14] but
has not been previously observed.
We use two complementary methods to observe the spin

dynamics in two different time regimes. A Stern-Gerlach
separation followed by absorption imaging (SG-AI) di-
rectly measures the populations of different spin states
and determines the magnetization m. This technique is
completely destructive, and only minimal phase informa-
tion can be inferred from modeling the data. The second
method is Faraday rotation spectroscopy which measures
the rotation of the polarization of a laser beam. This
rotation is proportional to the projection of the atomic

spin ~F along the laser propagation direction. It can be
used to continuously infer both phase and population in-
formation of the spin dynamics over multiple spin oscil-
lations. Other methods of measuring the condensate phase
can be found in Ref. [15].
It is hard to determine Bc from just the spin oscillation

period; however, we observe a sharp signature to distin-
guish two characteristic time evolutions in the vicinity of
Bc with Faraday rotation spectroscopy. At long times when
the oscillations have damped out [8], we use SG-AI to
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characterize the mean-field ground state populations as a
function of B andm to observe a predicted phase transition
from a two- to a three-component spinor BEC.

A 23Na magneto-optical trap containing up to 6� 109

atoms is prepared. A crossed optical dipole trap derived
from a multimode laser at 1070 nm is then loaded, fol-
lowed by evaporation and rethermalization. A weak mag-
netic field gradient is applied during 6 s forced evaporation
to form a fully polarized BEC of 1:5� 105 atoms in the
jF ¼ 1; mF ¼ 1i state. The final trap frequencies are

!x;y;z � ð2�Þ220ð ffiffiffi
2

p
; 1; 1Þ Hz, and the mean Thomas-

Fermi radius is 7:2 �m. We ramp up the magnetic field
along the z axis while turning off the field gradient. The
final value of B ranges between 6.3 and 60:7 �T with an
uncertainty of 0:04 �T (all quoted uncertainties are esti-
mated 1 standard deviation, combined statistical and sys-
tematic). We can prepare an initial state with any desiredm
and �0 by an rf pulse to rotate the atomic spin followed by
selective removal of atoms in a givenmF state. The rf pulse
is resonant with the linear Zeeman splitting, and its ampli-
tude and duration control the superposition of the mF

levels. The removal is performed by a microwave pulse
to selectively transfer jF ¼ 1; mFi atoms to the F ¼ 2
state, followed by a laser pulse resonant with these atoms.

The Faraday detection beam is directed along the x axis
and red-detuned 225 GHz from the 10 MHz wide D2 line
of 23Na. The beam is linearly polarized, has a 1=e2 waist of
1 mm at the condensate, and has a power of� 50 mW. The
setup for Faraday spectroscopy is similar to that outlined in
Refs. [16,17]. A carefully chosen aperture is inserted into
the imaging plane for an optimal signal-to-noise ratio
(SNR), and the Faraday rotation of the linear polarization
is detected using a Wollaston prism and an autobalanced
differential photodetector (PD) [18]. The Faraday rotation
angle oscillates at the Larmor precession frequency fL.
Changes of spin populations and phases are detected as a
modulation of the amplitude of the Faraday signal. Our
Faraday signal is the short-time power spectral density of
the PD output integrated over a narrow bandwidth of 1 kHz
around fL. This is proportional to the slowly varying
envelope of hFxi2. A typical example is shown in Fig. 1.
We divide the signal into 1 ms time bins, longer than the
transform limit of the digital filter (0.16 ms) but short
enough to resolve spin oscillations. Over a 100 ms mea-
surement, we thus make 100 distinct measurements of both
the spin projection amplitude and fL, on a single evolving
spinor BEC.

The parameters of the Faraday beam are chosen to
minimize atom loss from the off-resonant light scattering
while maintaining a good single-shot signal. The measured
lifetime of the BEC in the presence of the Faraday beam is
100 ms, consistent with the decay of hFxi inferred from
Fig. 1 and with the predicted photon scattering time. The
dephasing time due to the tensor light shift [19] is 1 order
of magnitude longer. The scattering loss is larger than any

other backaction in the present experiments. In the absence
of the Faraday beam, we observe an energy dissipation
which depends on B and the mean particle density hni.
Under the conditions of Fig. 1(a), the time scale of this
dissipation is 5 times longer than the decay seen in this
figure, while at high fields [Fig. 1(b)], it becomes compa-
rable. This dissipation is not well understood.
Our measurement SNR is limited by the number of

atoms in the BEC and the efficiency of the detection
[16]. Our BECs are not much larger than needed to get a
good single-shot signal with our system. Our detection
efficiency could be improved by a factor of 2.
The single mode approximation (SMA) [5,8] is applied

to understand our data. The spatial wave function of the
BEC is treated as a single mode, and the unit-normalized

total wave function can be represented as�ðr; tÞ ¼ �ðrÞ�
½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��1ðtÞ

p
ei��1ðtÞ;

ffiffiffiffiffiffiffiffiffiffiffi
�0ðtÞ

p
ei�0ðtÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ1ðtÞ

p
ei�þ1ðtÞ�, where �mF

and phases �mF
are independent of position. The

Hamiltonian conserves the particle number and m. The
system is described using �0 and � ¼ ��1 þ �þ1 � 2�0,
with the conserved classical spinor energy

E ¼ Eqzð1� �0Þ þ c�0½ð1� �0Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �0Þ2 �m2

q
cos��: (1)

Here Eqz is the quadratic Zeeman shift [Eqz=h ¼
ð0:0277 Hz=ð�TÞ2ÞB2], c ¼ c2hni is the spin-dependent
collision energy, and c2 is 1:59� 10�52 Jm3 for 23Na
[8]. The evolution of �0 and � is given by _�0 ¼
�ð2=@Þ@E=@� and _� ¼ ð2=@Þ@E=@�0, respectively.
Figure 2 shows typical phase diagrams of the equal-

energy contours of Eq. (1) for m ¼ 0 at two magnetic
fields. The preparation of the state determines the energy
E0ðBÞ. Our initial states have � ¼ 0. At any magnetic field,
we can define a separatrix, i.e., that energy contour EsepðBÞ,
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FIG. 1 (color online). Faraday signal (proportional to hFxi2)
taken from a single measurement for m ¼ 0 at two magnetic
fields 26 and 40 �T starting with �0 ¼ 0:5, � ¼ 0. The solid
line is a fit with a damped sinusoid. The signals show (a) an
oscillating phase and (b) a running phase at B below and above
Bc, respectively, as evidenced by the signal reaching zero or not.
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on which there is a saddle point where _�0 ¼ _� ¼ 0. This
defines the boundary between two regions in phase space.
In fact, EsepðBÞ ¼ Eqz in our system.

WhenE0ðBÞ>EsepðBÞ, the value of � is restricted, while
for E0ðBÞ<EsepðBÞ there is no bound. This defines regions
with an oscillating phase and a running phase, respectively.
In both regions, �0 oscillates. At E0ðBÞ � Esep, which

corresponds to small magnetic fields, the period only
weakly depends on the field. In the opposite limit, the
period decreases rapidly with increasing field. When B �
Bc, defined by E0ðBcÞ ¼ EsepðBcÞ, the oscillation becomes

anharmonic and the period diverges for B ¼ Bc.
In the SMA, the Faraday signal is derived from

hFxi ¼ cos

�
�þ ð�þ1 � ��1Þ

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ð1þm� �0Þ

q

þ cos

�
�� ð�þ1 � ��1Þ

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ð1�m� �0Þ

q
: (2)

The phase difference �þ1 � ��1 is determined by the fast
Larmor precession and a slow evolution due to �0 and �
[5]. For m ¼ 0, our Faraday signal is proportional to
�0ð1� �0Þcos2ð�=2Þ. For oscillating phase solutions, �
oscillates about zero (with amplitude <�), and thus the
signal is always greater than zero. On the other hand, the
signal is periodically zero for running phase solutions.
Figure 1 shows signals from the two regions. For m � 0,
the signal is described by a more complicated expression,
but the distinction between the two regions in the vicinity
of Bc remains the same.

This provides a sharp signature for locating Bc. Figure 3
shows the value of the minimum of the Faraday signal at
different B and m after removal of the exponential decay.
For the two magnetizations, a transition from an oscillating

phase solution to a running phase solution provides the
sharp signature to locate Bc. In Ref. [8], the population
oscillations were measured using SG-AI and fit by a sinu-
soid to extract a period and to locate the two regions of
phase space. No sharp experimental signature distinguish-
ing the boundary was observed.
Figure 3 also shows a comparison between the predic-

tion from the SMA and the data. Form ¼ 0, the agreement
is excellent. Form ¼ 0:3, however, the prediction does not
agree with our measurements for fields significantly larger
than Bc. At the transition point, the minimum of the
Faraday signal goes to zero, but above this point, the theory
predicts that the minimum rises with B, even though the
solution has a running phase. This increase is not observed.
The apparent agreement between the SMA theory and our
measurements has been surprising—at every magnetic
field reported in this Letter, we have seen the presence of
several spatial modes or spin domains during the spin
oscillations, although not in steady state. The observation
of spin domains is in marked contrast to our previous work
[8]. Several technical changes may have contributed to the
domain formation, such as a 50% increase of the total atom
number and more stable magnetic fields. Understanding
how multiple spatial modes affect the spin dynamics is an
interesting direction for future research.
At long times, after the oscillations have damped out, we

can study the mean-field ground state of this system.
Within the SMA, a quantum phase transition from a three-
to a two-component BEC is predicted for the mean-field
ground state [13]. We use SG-AI as a direct way to measure
the equilibrium populations and to observe this phase
transition.
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FIG. 3 (color online). The minimum of the Faraday signal as a
function of magnetic field for m ¼ 0 (red dots) and m ¼ 0:3
(blue bowties). A scale factor is applied to the Faraday signal to
correct for the PD response at different fL. The lines are fits
based on Eq. (2), which yield the fit parameters �0 ¼ 0:42 and
N ¼ 1:50� 105 for m ¼ 0 and �0 ¼ 0:54 and N ¼ 1:32� 105

for m ¼ 0:3. The fit parameters are within the 3% uncertainty of
those derived from absorption images.

0.0

0.2

0.4

0.8

0.6

1.0

Θ Θ
−π −0.5π π0.5π0 −π −0.5π π0.5π0

B = 26 B = 40 

FIG. 2 (color online). Equal-energy contour plots generated
from Eq. (1) at two magnetic fields 26 (left) and 40 �T (right),
with m ¼ 0 and c=h ¼ 33 Hz. Dashed (red) lines represent the
energy of a state with �0ðt ¼ 0Þ ¼ 0:5. Heavy (blue) solid lines
represent the energy of the separatrix (Esep) between oscillating

and running phase solutions. Darker colors represent lower
energies.
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The behavior of the variance of �0 allows us to deter-
mine when the system reaches a steady state. At a given
time, we measure �0 25–30 times and calculate a variance.
In the steady state, the variance reaches a minimum.
Because of technical noise in atom counting, this variance
is larger than that predicted by a quantum calculation of the
spinor ground state [20]. We find that a steady state for
m ¼ 0 is reached within our maximum hold time of 10 s
for B � 18 �T. For nonzero m, the steady state is reached
much faster.

Figure 4(a) shows the steady-state values of �0 as a
function of B. For each measurement, we prepare nearly
identical initial states at B ¼ 24:4 �T to set the popula-
tions and magnetizations. We then wait 4 s to reach the
steady state before adiabatically ramping the field to a
desired final value over 500 ms. We then wait another 5 s
before making an SG-AI measurement. In the inset in
Fig. 4(b), however, each initial state is directly prepared
with a different magnetization. In both figures, a transition
between a two-component BEC with �0 ¼ 0 and a three-
component BEC with nonzero �0 is observed. A critical
magnetic field B2�3 and a critical magnetization m2�3 are
defined and extracted from the intersection of two linear
fits to the data. Good agreement is found between the
experimental value of m2�3 and the prediction from the

SMA [13], as shown in Fig. 4(b). This confirms a phase
transition from a three- to a two-component spinor BEC in
the antiferromagnetic mean-field ground state. Although it
is observed here at a finite temperature, the phase transition
should remain at zero temperature, where the transition
would be driven solely by quantum fluctuations. It has been
predicted that this phase transition persists even when the
spin states do not share the same spatial distribution and
the SMA is no longer appropriate [13].
In conclusion, we have demonstrated that Faraday rota-

tion spectroscopy provides a method to continuously moni-
tor the spin dynamics in a spinor BEC. The technique
provides a sharp signature to locate the boundary in phase
space between the oscillating and running phase solutions.
We observe a dependence of the position of this separatrix
on the magnetization. In addition, we have confirmed a
quantum phase transition from a two- to a three-component
BEC in the mean-field ground state. Physics beyond the
SMA, possibly similar to Landau damping of excitations of
a single component BEC [21], may explain the dissipation
leading to the equilibrium observed in these experiments.
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FIG. 4 (color online). Evidence of phase transitions in the
mean-field ground state of the antiferromagnetic spinor BEC.
(a) Points indicate �0 as a function of B at m ¼ 0:71ð2Þ. The
intersection of two linear fits defines B2�3, the critical magnetic
field for the phase transition. (b) Inset: �0 versus m for B ¼
21:2 �T. The intersection of two linear fits defines m2�3, the
critical magnetization. The main figure shows m2�3 versus B.
The solid line is the prediction from the SMA.

PRL 102, 125301 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

27 MARCH 2009

125301-4


