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We consider an overdamped Brownian particle, exposed to a two-dimensional, square lattice potential

and a rectangular ac drive. Depending on the driving amplitude, the linear response to a weak dc force

along a lattice symmetry axis consist in a mobility in basically any direction. In particular, motion exactly

opposite to the applied dc force may arise. Upon changing the angle of the dc force relatively to the square

lattice, the particle motion remains predominantly opposite to the dc force. The basic physical mechanism

consists in a spontaneous symmetry breaking of the unbiased deterministic particle dynamics.
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Brownian particle dynamics in two-dimensional peri-
odic potential landscapes arise in a large variety of differ-
ent contexts. Examples include driven vortex lattices [1–3],
surface diffusion [4], a ring of several Josephson junctions
[5], colloidal particles or globular DNA in structured mi-
crofluidic devices [6,7] and in optical [8,9] or magnetic
[10] lattices, enzymatic reaction cycles driving molecular
motors [11], nanoscale friction [12] and superlubricity
[13]. They have recently attracted considerable theoretical
[1,14] and experimental [8] interest for particle sorting in
two-dimensional periodic structures with the help of an
externally applied dc force, whose angle relatively to the
periodic potential can be parametrically changed. The key
point is that the resulting particle velocity may exhibit a
different direction than the applied dc force and that the
deflection angle may be different for different particle
species. While the deflection angles between force and
velocity remain bounded to relatively small values, our
present system will lead to (practically) arbitrary deflection
angles.

A second recent series of papers [2,10] consider the
same system but in the presence of an additional circular
ac drive. Deflection angles up to 90� (absolute transverse
mobility) have been found in [2], while [10] reports trans-
porting orbits in the absence of a dc drive. A related variant
is to replace the circular by a more common, linear ac
drive, but now breaking the time-space symmetry by chos-
ing a bi-harmonic driving signal [3], and focusing on the
low friction regime [15]. The setup we will consider here is
related but simpler: a standard ac drive without any con-
comitant space-time symmetry breaking and negligible
inertia effects.

The unbiased far from equilibrium dynamics of a
Brownian particle, responding to a dc force by a directed
transport opposite to that force, have been extensively
investigated under the label ‘‘absolute negative mobility’’
(ANM) [7,16]. Our present work represents the natural
extension, namely, an unbiased far from the equilibrium
system admitting an easily controllable linear response into

(practically) any direction relative to the dc force, includ-
ing ANM as a special case.
We consider the following 2D Langevin dynamics of a

Brownian particle with coordinates ~r ¼ x ~ex þ y ~ey:

_~rðtÞ ¼ AðtÞ ~e� þ F~e� � ~rUð ~rðtÞÞþ
ffiffiffiffiffiffi
2�

p
~�ðtÞ: (1)

Thus, inertia effects are neglected (overdamped dynamics),
and the friction coefficient is absorbed into the time unit.
As illustrated with Fig. 1, AðtÞ is the ac-driving signal along
the direction ~e� :¼ ðcos�; sin�Þ, and analogously for the
dc-bias F~e�. The periodic potential is represented by Uð ~rÞ
and thermal fluctuations of temperature � are modeled by
the two delta-correlated, Gaussian noise components of
~�ðtÞ. We focus on the particularly simple rectangular driv-
ing AðtÞ ¼ asignfcosð�tÞg with amplitude a and period
T ¼ 2�=�. We verified that a sinusoidal AðtÞ leaves all
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FIG. 1 (color online). Schematic illustration of our model (1).
The contour lines represent the potential Uð~rÞ with a cutoff for
better visualization (white discs). The double arrow indicates the
ac-drive AðtÞ ~e�, one arrow the dc-bias F~e�, and another arrow

the particle velocity (2). The particle is sketched by the black
dot. The angle c quantifies the ‘‘deflection’’ of ~v from F~e�.
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our main findings qualitatively unchanged and expect the
same for even more general AðtÞ. Further, we focus on the
potential Uð ~rÞ ¼ P ~Uð ~rþ Ln~ex þ Lm~eyÞ with r :¼ j~rj,
~Uð~rÞ ¼ u expf�r=�g=r, and u, � > 0. In other words, we
consider a square lattice of repulsive Yukawa potentials, a
standard choice for screened charges [2]. Again, we expect
that our results remain qualitatively unchanged for more
general ~Uð ~rÞ, modelling, e.g., pinned vortices [1], optical
tweezers [8,9], or magnetic bubbles [10], and we have
explicitly verified this for Gaussian shaped repulsive and
attractive potentials. Without loss of generality we chose
length and time units with L ¼ 1 and u ¼ 1. Regarding �,
we obtained practically indistinguishable results for all
� � 4, variations by a few percent down to � � 1, and
notable quantitative but no qualitative differences at least
down to � � 0:1. In the following we focus on the repre-
sentative example � ¼ 4.

The observable of main interest will be the time-
averaged particle velocity

~v ¼ vx ~ex þ vy ~ey :¼ lim
t!1

1

t

Z 1

0
dt0 _~rðt0Þ; (2)

being independent of the seed ~rð0Þ and the realization of
~�ðtÞ in (1) for any �> 0 due to ergodicity reasons.
Generally speaking, the periodic potential, the ac drive

and the dc bias in (1) give rise to several ‘‘competing
directions’’, whose net effect on the velocity ~v from (2)
is far from obvious. For zero bias F, the ac forcing still
keeps the system off equilibrium but any nonzero velocity
~v is prohibited by symmetries [17]. Our first objective is
the linear response of ~v to a weak dc bias along the x axis,
cf. Fig. 1. Our findings in Fig. 2 exhibit a quite intriguing
behavior. Keeping all ‘‘competing directions’’ fixed and
solely changing the ac amplitude by 40%, almost any
direction of ~v may arise, even motion exactly opposite to
the applied dc bias (ANM).

Next, we focus on a set of parameters close to the
occurrence of ANM in Fig. 2 and now ask for the response
of ~v upon changing the direction of the dc bias. Again, the
results in Fig. 3 are quite nontrivial, the most remarkable
feature being that the projection of the velocity along the
dc bias is mostly negative, i.e., the particle motion remains
predominantly opposite to the dc force (90� < c < 270�).
Similarly as in Fig. 2, the effect is particularly striking for
small noise strengths �, and vanishes for � * 10�3.
To better understand these findings we first focus on the

deterministic dynamics (� ¼ 0) in the simplest case when
the ac drive and the dc bias are parallel and acting along
one of the main symmetry axes of the periodic potential.
Regarding the (1, 0) direction, i.e., � ¼ � ¼ 0�, the lines
y ¼ n=2 constitute invariant sets of the deterministic dy-
namics (1), stable for odd and unstable for even n. Thus,
the particle motion is confined between two neighboring
such lines and generically is attracted by the one with odd n
for large times. Further, the velocity (2) necessarily must
follow the direction of the dc force, i.e., c ¼ 0�, and, in
particular, vanishes for F ¼ 0. This qualitative behavior
remains unchanged in the presence of noise (�> 0).
Analogous conclusions hold for the (0, 1) lattice direction.
Turning to the (1, 1) direction, i.e., � ¼ � ¼ 45�, the

lines x� y ¼ n now constitute invariant sets of the deter-
ministic dynamics (1) due to its invariance under
S1: ðx; yÞ � ðy; xÞ. Again, the particle motion must remain
confined between two adjacent such lines, implying for the
velocity (2) that c ¼ 0� and hence vx ¼ vy. But now, the

motion on the invariant lines may change its stability
properties upon variation of a system parameter, and addi-
tional nontrivial attractors, not contained in any of the
invariant lines, may arise. A typical example is shown in
Fig. 4. We see that—depending on the driving amplitude a
and possibly also on the seed ~rð0Þ—the orbit ~rðtÞ ap-
proaches a periodic or a chaotic long time behavior. The
concomitant velocity (2) is still well defined but—in con-
trast to the noisy case �> 0—now may depend on the
initial condition ~rð0Þ. The ‘‘central’’ straight line in the
bifurcation diagram for a < 3:22 belongs to all the periodic
attractors on the invariant sets x� y ¼ n, exemplified by

FIG. 2. Velocity (2) from numerical simulations of (1) for � ¼
0:15 � 360� ¼ 54�, a 2 ½4:3; 8�, � ¼ 0�, F ¼ 0:03, � ¼ 4:3,
� ¼ 2:2 � 10�4 (left) and � ¼ 6:7 � 10�4 (right). Shown is the
parametric dependence of the velocity components vx, vy on the

ac-amplitude a in units of L=T (L ¼ 1, T ¼ 2�=�). Arrows
indicate increasing a values. Upon further decreasing F, a close
to linear response behavior of ~v results (not shown).

FIG. 3. Deflection angle c (see Fig. 1) and velocity v :¼ j ~vj
versus ‘‘dc directionality’’ � [see (1)] for the same system as in
Fig. 2 but with a ¼ 7:4, and � ¼ 4:4 � 10�4 (solid), � ¼ 6:7 �
10�4 (dashed).
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(a) in the upper inset of Fig. 4, and giving rise to a
vanishing average velocity. At a � 3:09 we observe the

appearance of an additional pair of nontransporting ( ~v ¼
~0) periodic attractors, spontaneously breaking S1 as well as
the second symmetry S2: ðx; yÞ � ð�x;�yÞ of (1), but still
maintaining (up to translations) S1 � S2: ðx; yÞ �
ð�y;�xÞ, see (b) in Fig. 4. Thus, there are now three
coexisting attractors within every unit cell of the periodic
potential, one of type (a), the others of type (b) and its
image under S1. At a � 3:102 the pair of type (b) attractors
exhibit a pitchfork bifurcation, which spontaneously
breaks the S1 � S2 symmetry (symmetry breaking bifurca-
tion [18]), resulting in four distinct, nontransporting attrac-
tors per unit cell. One of them is exemplified with (c) in
Fig. 4, its three ‘‘brothers’’ follow as mirror images with

respect to the closest x� y ¼ n and/or xþ y ¼ n lines.
Upon further increasing a, a period doubling route to chaos
follows, which would be impossible without the preceding
symmetry breaking bifurcation [18]. The corresponding
attractors lose stability by way of a crisis at a � 3:12.
They reappear beyond a � 3:19 as ‘‘chaotic bands’’, inter-
rupted by ‘‘periodic windows’’. Some of these windows
exhibit attractors corresponding to phase-locked transport-
ing orbits. The symmetry breaking bifurcation at a �
3:102 is pivotal for such transporting orbits: Since there
is no systematic force (F ¼ 0), which could favor motion
in one or the other direction, spontaneous symmetry break-
ing of all symmetries involving S2 is an indispensable
prerequisite for transporting orbits. The simplest and
most prominent example arises within the periodic window
at a � 3:33, exhibiting two attractors between any pair of
adjacent x� y ¼ n lines. One such orbit is exemplified in
the lower inset of Fig. 4, its ‘‘twin brother’’ follows as
mirror image with respect to any xþ y ¼ n line.
Apparently, this orbit arises by continuing the deformation
of orbit (b), which leads to (c) even further, and rewiring
one of its ‘‘arms’’ into the neighboring unit cell. The latter
operation cannot be realized by a continuous deformation
and hence one might guess that this somehow happens
within the ‘‘gap’’ in the bifurcation diagram between a �
3:12 and a � 3:19.
Because of the S1 � S2 symmetry at F ¼ 0, oppositely

transporting orbits coexist and are stable within exactly the
same range of the other system parameters. Applying a
force F � 0, however, breaks the symmetry and hence the
existence regions of the two orbits in parameter space no
longer coincide. Closer inspection of how these regions
change shape and size reveals that there are, for not too
large jFj, parameter values, where the only stable orbit is
the one which transports against the dc-bias F. In other
words, we recover yet another example of ‘‘pure’’ ANM
(c ¼ 180�) [7,16], which furthermore turns out to survive
even in the presence of (sufficiently weak) noise (�> 0).
We finally address the case of arbitrary (but fixed)

orientations of the external forcings. Without loss of gen-
erality we restrict ourselves to 0<�< 90� but admit
arbitrary �. For such general driving directions the deter-
ministic dynamics (1) is not restricted any more by simple
invariant sets. Rather, by means of extensive computer
simulations we have found that transporting particle mo-
tion is created in a way very similar to the case exemplified
above with Fig. 4, and typically ‘‘locks’’ to one of the three
main symmetry axes (1, 0), (0, 1) or (1, 1), depending on
amplitude and frequency of the ac drive. In particular, for
F ¼ 0, symmetry dictates the coexistence of transport into
opposite directions for either of these basic orientations.
Applying a (not too large) dc-bias F~e� along a direction

that is generally different from the one of the ac drive,� �
�, has two main effects: First, this coexistence is lifted,
yielding parameter regions where only one transporting
direction out of the 6 different possible directions is stable.

FIG. 4. Upper part: Bifurcation diagram for the unbiased (F ¼
0) deterministic (� ¼ 0) dynamics (1) with � ¼ 45�, � ¼ 3,
and varying a. Shown is a stroboscopic representation of the
attractors, governing the long-time behavior, by plotting xðjTÞ
modulo L (L ¼ 1), i.e., the reduced x component at multiples j
of the driving period T ¼ 2�=�, for several different seeds ~rð0Þ
after initial transients have died out. Lower part: Corresponding
x component of the average velocity (2) in units of L=T. Upper
inset: Stable periodic orbits (attractors) for a ¼ 3:1 (a and b) and
for a ¼ 3:107 (c). Dotted horizontal lines: invariant sets x� y ¼
n. Black ‘‘clouds’’ and ‘‘discs’’ represent the potential Uð~rÞ,
corresponding to Fig. 1 after a 45� rotation. Lower inset: stable
period-2 transporting orbit for a ¼ 3:33.
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Second, new transport directions around the orientation of
the bias force become accessible and follow a similar
‘‘locking scheme’’ as in [14] upon variation of a system
parameter.

In other words, systematically changing, say, the driving
amplitude a leads to ‘‘jumps’’ in the deterministic transport
direction where—due to the time-dependent ac drive—also
transport with velocity components opposite to the bias
force occurs, in marked contrast to previous findings in
[14]. The main effect of (weak) thermal noise is to ‘‘inter-
polate’’ between neighboring deterministic directions, re-
sulting in the smooth behavior shown in Fig. 2: transport in
virtually any direction but with emphasis on directions
around the orientation of the dc bias. Similarly, the varia-
tions of the deflection angle c observed in Fig. 3 result
from a basically unchanged orientation of ~v into the ‘‘nega-
tive’’ (1, 0) direction as long as the dc bias has a non-
vanishing component in the ‘‘positive’’ (1, 0) direction
(i.e., �90� & � & 90�) and a quick transition into the
opposite situation when the dc orientation � moves into
the complementary regime between 90� and 270�. In any
case, noise strengths � that are too large basically override
the effects of the periodic potential and the system tends to
return to the trivial behavior in the absence of the periodic
potential.

In conclusion, several quite astonishing linear response
transport phenomena of a very simple and general non-
equilibrium system have been observed and understood to
the extent that an efficient and systematic search of perti-
nent parameter regions becomes easily feasible. The sys-
tem is minimal in so far as any further reduction or
simplification unavoidably rules out one of the indispens-
able prerequisites, most notably the occurrence of sponta-
neous symmetry breaking and chaos in the deterministic
limit. On the other hand, the effects are robust against a
large variety of modifications and amendments of the
model and hence should be realizable in several different
experimental systems [5–10], for instance for particle sort-
ing purposes.
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