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and neutron diffraction experiments is generalized to determine the correlation functions of scattering

potentials of stationary random media from scattering experiments.
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One of the oldest, very powerful, and useful methods for
determining the structure of crystalline objects is the well-
known technique of x-ray diffraction. The x-ray diffraction
method was introduced in classic works of von Laue,
Friedrich, and Knipping [1] and of Ewald [2,3] in the
1920’s, and since then it has became one of the chief tools
for the study of the structure of materials. Later on, this
technique has also come to be used with slow neutrons (see
for example [4,5]). Basic papers on this subject are re-
printed in Ref. [6].

In the present Letter, we show that this technique may be
generalized to determine, approximately, the correlation
functions of scattering potentials of random (stochastic)
static media from scattering experiments. The essence of
the technique consists of measurements of a correlation
function (the so-called cross-spectral density function) of
the far field, generated by scattering of a coherent plane
wave on the medium and to calculate, from the measured
data, an approximation to the correlation function of the
scattering potential of the medium by means of multiple
Fourier transforms. In the classic theory of x-ray diffrac-
tion by crystals, the range of accessible Fourier compo-
nents of the crystal structure is determined elegantly with
the help of the well-known ‘‘Ewald-sphere construction’’
[2,7]. We show that some of the low spatial-frequency
components of the correlation function of the scattering
potential of a static stochastic medium may be determined
with the help of two spheres, each of which is analogous to
the Ewald limiting sphere of the classic theory of the x-ray
diffraction by crystals.

Several attempts to obtain information about scattering
potentials of randommedia involve the measurement of the
spectrum of the scattered light in the far zone (see, for
example, [8–11]). Because the spectrum is a function of
position (i.e., it is a ‘‘single point’’ quantity), whereas the
correlation function of the scattering potential is a function
of two points, these methods are only applicable when the
medium has some special properties, such as homogeneity.
In a paper published about two decades ago [12], general
expressions were obtained for the cross-spectral density

function, for the spectral degree of coherence, and for the
spectral density of the light in the far zone generated by
scattering on a randommedium; i.e., it deals with the direct
scattering problem. In this Letter, we present solution to an
inverse problem.We show how to obtain information about
the scattering potential of the medium from measurements
of the cross-spectral density function of the scattered light
in the far zone, using a generalization of the Ewald-sphere
construction. The proposed method allows the determina-
tion of some, if not all, of the low spatial-frequency com-
ponents of the correlation function of the scattering
potential of weak scatterers of a wide class [13].
In the absence of symmetry properties of the scattering

medium, our method is computationally rather intensive.
But the theory reveals an elegant analogy with the classic
theory of structure determination of crystalline objects and
provides a method for determining an approximation to the
correlation functions of scattering potentials of static ran-
dom media.
Suppose that a coherent polychromatic plane light wave,

propagating in a direction specified by a real unit vector s0,
is incident on a statistically stationary random medium,
occupying a finite domainD (see Fig. 1). The incident light
at a point r may be characterized by a statistical ensemble

fUðiÞðr; s0;!Þ exp½�i!t�g of monochromatic realizations

UðiÞðr; s0;!Þ, all of frequency !, in the sense of coherence
theory in the space-frequency domain (see Ref. [15],
Chapter 4). Here,

UðiÞðr; s0;!Þ ¼ að!Þ expðiks0 � rÞ; (1)

where að!Þ is, in general, complex and k ¼ !=c, c being
the speed of light in vacuum. The cross-spectral density
function of the incident light at a pair of points, specified
by position vectors r1 and r2, may be expressed in the form
([15], Sec. 4.1)

WðiÞðr1; r2; s0;!Þ ¼ hUðiÞ�ðr1; s0;!ÞUðiÞðr2; s0;!Þi; (2)

where the asterisk denotes the complex conjugate and the
angular brackets denote ensemble average. From Eqs. (1)
and (2), it follows that the cross-spectral density function
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of the incident light may be expressed as

WðiÞðr1; r2; s0;!Þ ¼ SðiÞð!Þ exp½iks0 � ðr2 � r1Þ�; (3)

where SðiÞð!Þ ¼ ha�ð!Það!Þi is the spectral density of the
incident light.

The scattering potential of a deterministic medium, at a
point specified by a position vector r0 within the scatterer,
is defined by the formula {[16], Sec. 13.1.1, Eq. (6)}

Fðr0;!Þ ¼ k2

4�
½n2ðr0;!Þ � 1�; (4)

where nðr0; !Þ is the refractive index of the medium, at
frequency ! of the incident light. For a random medium
Fðr0;!Þ is, of course, a random function r0. The correlation
function of the scattering potential at a pair of points,
specified by position vectors r01 and r02 in the scattering
medium, is defined by the formula

CFðr01; r02;!Þ ¼ hF�ðr01;!ÞFðr02;!Þim; (5)

where the angular brackets with subscript m denote the
average, taken over the ensemble of the random medium.
We assume that the medium is a weak scatterer so that the
scattering may be analyzed within the accuracy of first
Born approximation ([16], Sec. 13.1.2). The cross-spectral
density function of the scattered light in the far zone, at two
points specified by position vectors rs1 and rs2 (s21 ¼ 1,
s22 ¼ 1) (see Fig. 1), is given by the formula {[15],
Sec. 6.3.2, Eq. (9)}

Wð1Þ
s ðrs1; rs2; s0;!Þ ¼ SðiÞð!Þ

r2

� ~CF½�kðs1 � s0Þ; kðs2 � s0Þ;!�:
(6)

Here,

~CF½K1;K2;!� ¼
Z
D

Z
D
CFðr01; r02;!Þ

� exp½�iðK1 � r01 þK2 � r02Þ�d3r01d3r02
(7)

is the six-dimensional Fourier transform of the correlation
function (5) of the scattering potential, and

K 1 ¼ �kðs1 � s0Þ; K2 ¼ kðs2 � s0Þ: (8)

The vectors K1, and K2 are analogous to the momentum
transfer vector of quantum mechanical theory of potential
scattering. From Eqs. (8), it follows that as the direction s1
varies over all possible directions, with the direction s0 of
incidence being kept fixed, the end points of the vectorsK1

move on the surface of a sphere of radius k centered at the
point ks0. Similarly, with s0 kept fixed, and the direction s2
changing, the end points of the vector K2 move on the
surface of another sphere of radius k centered at the point
with position vector �ks0 (see Fig. 2). Each of these
spheres are analogous to the classic ‘‘Ewald sphere of
reflection’’ used in the theory of x-ray diffraction of crys-
tals [2,7]. It is clear from the definitions (8) that

0 � jK1j � 2k ¼ 4�

�
; 0 � jK2j � 2k ¼ 4�

�
; (9)

where � is the wavelength corresponding to the frequency
!. Figure 2 illustrates the domain of the accessible Fourier
components, labeled by vectors K1 and K2, given by
Eqs. (8), of the two point spatial correlation function of
the scattering potential, for a particular direction of inci-
dence s0. Consequently, for a fixed direction of incidence
s0, measurements of the cross-spectral density of the scat-
tered field at all pairs of points (rs1, rs2) in the far zone
allows the determination of all of those six-dimensional
Fourier components (K1, K2) for which K1 and K2 lie on
their respective Ewald spheres of reflection. However, it
can be seen from Eqs. (8) and from Fig. 2 that K1 and K2

are coupled because both depend on the vector s0 and
cannot be determined independently, because their Ewald
spheres of reflection rotate in unison as the direction of
incidence s0 is varied. The vectors K1 and K2 satisfy
another inequality in addition to the inequalities (9), viz.,

jK1 þK2j ¼ kjs2 � s1j � 4�

�
: (10)

Nonetheless, as s0 is varied, the vectors (K1, K2) sweep
out a continuous, albeit complicated six-dimensional vol-
ume in Fourier space.
Equation (6) makes it possible to express the six-

dimensional Fourier transform of the correlation function
of the scattering potential in terms of the cross-spectral
density function of the far field, which may be determined
experimentally (see Ref. [15], Sec. 4.2). Using Eqs. (6) and
(7), one can obtain an estimate of the correlation function

of the scattering potential, denoted by ĈFðr01; r02;!Þ in
terms of the inverse Fourier transform of the cross-spectral
density function as

FIG. 1. Illustrating the notations. s0 is a unit vector in the
direction of propagation of the incident plane wave, s1 and s2 are
unit vectors in directions of scattering. r is a distance from an
origin in the domain occupied by the scatterer to a point in the far
zone.

PRL 102, 123901 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

27 MARCH 2009

123901-2



Ĉ Fðr01; r02;!Þ ¼ r2

ð2�Þ6SðiÞð!Þ
�

Z
VðK1Þ

Z
VðK2Þ

Wð1Þ
s ðrs1; rs2; s0;!Þ

� exp½iðK1 � r01 þK2 � r02Þ�d3K1d
3K2:

(11)

Here, VðK1Þ and VðK2Þ denote the regions of integration
of K1 and K2, respectively.

We will illustrate this technique by determining the
correlation function of the scattering potentials of a quasi-
homogeneous medium [17]. The correlation function of
the scattering potentials of such a medium has the form

CFðr01; r02;!Þ ¼ CRðR0; !ÞCrðr0;!Þ; (12)

where function CRðR0; !Þ varies much more slowly with
R0 ¼ ðr01 þ r02Þ=2 than the function Crðr0; !Þ varies with
r0 ¼ r02 � r01. Substituting Eq. (12) into Eq. (7), we find
that the six-dimensional Fourier transform of the correla-
tion function has the factorized form

~CFðK1;K2;!Þ ¼ ~CRðK1 þK2;!Þ ~Cr½ðK2 �K1Þ=2;!�:
(13)

In this case, the six-dimensional spatial-frequency vector is
most naturally represented (using sum and difference vec-
tors) as K ¼ ðKS;KDÞ, where

K S ¼ K1 þK2 ¼ kðs2 � s1Þ; (14)

K D ¼ ðK2 �K1Þ=2 ¼ k½ðs1 þ s2Þ=2� s0�: (15)

We see that the two three-dimensional spatial-frequency
vectors,KS andKD, are uncoupled and can independently
sweep out two Ewald limiting spheres of radius 2k, i.e.,
VðKSÞ ¼ fjKSj � 2kg and VðKDÞ ¼ fjKDj � 2kg. Hence,
using Eq. (11), one can obtain an estimate of the low
spectral frequency part of the correlation function of the
scattering potential of the random medium.
To illustrate the inversion, we will assume that CRðR0Þ

and Crðr0Þ have Gaussian forms, viz.

CRðR0Þ ¼ C0 exp

�
�jR0j2

2�2
R

�
; (16a)

Crðr0Þ ¼ exp

�
�jr0j2

2�2
r

�
; (16b)

FIG. 2 (color online). The small shaded spheres are analogous
to the ‘‘Ewald’s spheres of reflection’’ for a particular direction
s0 of incidence of a plane wave, with wave number k. These
spheres are the region of accessible Fourier components for a
particular direction of incidence s0. The large spheres are analo-
gous to the ‘‘Ewald’s limiting sphere."

FIG. 3. The assumed (a) and the reconstructed (b) normalized

low spatial-frequency part CðLPÞ
F =C0 of the correlation function

of the scattering potential plotted as functions of jR0j ¼ R0 and
jr0j ¼ r0, for a medium with correlation function of scattering
potential given by Eqs. (12) and (16). The parameters were
chosen as �r ¼ 0:1� and �R ¼ 0:6�.
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where �R � �r. From Eqs. (6) and (7), one readily finds
that, in this case,

Wð1Þ
s ðrs1; rs2; s0;!Þ ¼ ð2��R�rÞ3SðiÞð!Þ

r2
C0

� exp

�
� 1

2
jKSj2�2

R

�

� exp

�
� 1

2
jKDj2�2

r

�
: (17)

The cross-spectral density function Wð1Þ
s (rs1, rs2, rs0; !)

is proportional to the degree of coherence, and hence can
be determined from interference experiments (see [15],
Sec. 4.2). Using Eqs. (11) and (17), one can then determine

the low spatial-frequency part CðLPÞ
F (r01, r02; !) of the

correlation function of the scattering potential. The recon-
struction may be expected to be reasonably accurate, when
the parameters �R and �r are appreciably greater than the
wavelength, as is the case illustrated by the Figs. 3 and 4.

We conclude by saying that we have described a method
for determining an approximate form of the correlation
function of scattering potential of stochastic random media

from measurements on the correlation function of the
scattered field in the far zone. The method may be regarded
as a generalized analogue of the classic technique due to
von Laue and Ewald of determining the structure of crys-
talline objects from x-ray diffraction experiments. We
illustrated the theory by an example.
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